Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1051-1056, 2019
Selective synthesis of acetonitrile by reaction of ethanol with ammonia over Ni/Al2O3 catalyst
A highly selective synthesis of acetonitrile was carried out by the reaction of ethanol with ammonia on a 10 wt% Ni/Al2O3 catalyst. The conversion of ethanol and selectivity to acetonitrile, ethylene, and monoethylamine were examined by varying experimental parameters such as ammonia partial pressure, reaction temperature, and space time. The increase in the ammonia partial pressure led to a considerable decrease in the conversion and small increase in the acetonitrile selectivity up to a molar ratio of NH3/ethanol of 3, followed by almost constant values. The partial reaction order of ethanol obtained by controlling the space time was one, while that of ammonia was negative, - 0.4. The deactivation behavior of the catalyst after 100 h on stream reaction at 230 °C was analyzed by X-ray photoelectron spectroscopy and temperature programmed oxidation of the catalyst used. The catalyst deactivation was attributed to the gradual formation of nickel carbonitride on the catalyst surface.
[References]
  1. Galanov SI, Sidorova O, Gavrilenko MA, Frants O, Nekhoroshev V, Korolev YD, Egoshina A, Procedia Chemistry, 15, 14, 2015
  2. Hur JM, Coh BY, Lu L, Kwon HH, Lee HI, Catal. Lett., 69(3-4), 237, 2000
  3. Xie YL, Luo MF, Zhao JJ, React. Kinet. Catal. Lett., 89(1), 29, 2006
  4. Naik SP, Fernandes JB, Indian J. Chem. Technol., 5, 405, 1998
  5. Kim KN, Lane AM, J. Catal., 137, 127, 1992
  6. Tatsumi T, Kunitomi S, Yoshiwara J, Muramatsu A, Tominaga HO, Catal. Lett., 3, 223, 1989
  7. Badani MV, Delgass WN, J. Catal., 187(2), 506, 1999
  8. Hu Y, Cao J, Deng J, Cui B, Tan M, Li J, Zhang H, Reac. Kinet. Mech. Cat., 106, 127, 2012
  9. Zhang Y, Zhang Y, Feng C, Qiu C, Wen Y, Zhao J, Catal. Commun., 10, 1454, 2009
  10. Feng C, Zhang YC, Zhang YN, Wen YL, Zhao JQ, Catal. Lett., 141(1), 168, 2011
  11. Zhang D, Zhang YC, Wen YL, Hou KH, Zhao JQ, Chem. Eng. Res. Des., 89(10A), 2147, 2011
  12. Reddy BM, Manohar B, J. Chem. Soc., Chem. Commun., 234 (1993).
  13. Kulkarni S, Rao RR, Subrahmanyam M, Rao AR, J. Chem. Soc., Chem. Commun., 273 (1994).
  14. Rojas E, Guerrero-Perez MO, Banares MA, Catal. Lett., 143(1), 31, 2013
  15. Corker EC, Mentzel UV, Mielby J, Riisager A, Fehrmann R, Green Chem., 15, 928, 2013
  16. Park JH, Hong EP, An SH, Lim DH, Shin CH, Korean J. Chem. Eng., 34(10), 2610, 2017
  17. Chen LW, Choong CKS, Zhong ZY, Huang L, Wang Z, Lin JY, Int. J. Hydrog. Energy, 37(21), 16321, 2012
  18. Hong E, Bang S, Cho JH, Jung KD, Shin CH, Appl. Catal. A: Gen., 542, 146, 2017
  19. Cho JH, An SH, Chang TS, Shin CH, Catal. Lett., 146(4), 811, 2016
  20. Bartholomew CH, Appl. Catal. A: Gen., 212, 17, 2001
  21. Baiker A, Monti D, Fan YS, J. Catal., 88, 81, 1984
  22. Cho JH, Park JH, Chang TS, Seo G, Shin CH, Appl. Catal. A: Gen., 417, 313, 2012
  23. Papakonstantinou P, Zeze D, Klini A, McLaughlin J, Diamond Relat. Mater, 10, 1109, 2001
  24. Ronning C, Feldermann H, Merk R, Hofsass H, Reinke P, Thiele JU, Phys. Rev. B, 58, 2207, 1998
  25. Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G, Appl. Phys. A, 94, 387, 2009