Issue
Korean Journal of Chemical Engineering,
Vol.36, No.6, 996-1003, 2019
Development of a low environmental impact, porous solar absorber coating utilizing binary/ternary solvent blends for CSP systems
Concentrated solar power utilizes a field of mirrors to redirect solar rays onto a central receiver to generate thermal energy through heat transfer media and a Rankine steam cycle. To effectively transfer heat to the heat transfer material, the receiver has to efficiently convert/absorb the incoming solar flux without losing energy to radiation. Receivers are coated with a solar absorber coating evaluated with a figure of merit which weighs the energy absorbed by the sample against the total incident energy. The structure of the painted coating plays a large part in the long-term stability and optical properties of the solar absorber coatings. We investigated the effects of different solvents on the micro-structure of black oxide coated paint tiles and evaluated the stability of the paint colloid using the Gibbs free energy of mixing. We also investigated the use of low environmental impact solvents as potential alternates to standard solvents to create low-stress films. The results show that paint blends thinned by blends of dimethyl carbonate and tertbutylbenzene have low-stress surface morphology with pore-like structures due to the favorable Gibbs free energy value of the colloid and reduced evaporation rate of the primary solvents. These coatings also exhibited strong optical performance with figure of merit and solar absorbance values of 91.60% and 96.86%, making them ideal coatings for next generation concentrated solar power plants.
[References]
  1. Nelson J, The Physics of Solar Cells. Imperial College Press, London, UK (2003).
  2. Gratzel M, Nature, 414, 338, 2001
  3. Zhang HL, Baeyens J, Degreve J, Caceres G, Renew. Sust. Energ. Rev., 22, 466, 2013
  4. Barlev D, Vidu R, Stroeve P, Sol. Energy Mater. Sol. Cells, 95(10), 2703, 2011
  5. Green A, Diep C, Dunn R, Dent J, Energy Procedia, 69, 2049, 2015
  6. Boubault A, Ho CK, Hall A, Lambert TN, Ambrosini A, Renew. Energy, 85, 472, 2016
  7. Ho CK, Mahoney A, Ambrosini A, Bencomo M, Hall A, Lambert TN, ASME. J. Sol. Energy Eng., 136, 14502-014502-4 (2013)., 14502, 2013
  8. Kim T, VanSaders B, Moon J, Kim T, Liu C, Khamwannah J, Chun D, Choiu D, Kargar A, Chen R, Liu Z, Jin S, Nano Energy, 11, 247, 2015
  9. Geng QF, Zhao X, Gao XH, Yu HC, Yang SR, Liu G, Sol. Energy Mater. Sol. Cells, 105, 293, 2012
  10. Bayon R, San Vicente G, Maffiotte C, Morales A, Renew. Energy, 33(2), 348, 2008
  11. Vince J, Vuk AS, Krasovec UO, Orel B, Kohl M, Heck M, Sol. Energy Mater. Sol. Cells, 79(3), 313, 2003
  12. Kennedy CE, Review of Mid- to High-Temperature Solar Selective Absorber Materials. TP-520-31267, NREL: Lakewood, CO (2002).
  13. Pohanka RC, Rice RW, Walker BE, J. Am. Ceram. Soc., 59, 71, 1976
  14. Wang ZL, Wang J, Richter H, Howard JB, Carlson J, Levendis YA, Energy Fuels, 17(4), 999, 2003
  15. Francesco I, Cacciuttolo B, Pucheault M, Antoniotti S, Green Chem., 17, 837, 2015
  16. Silikophen P80/X: Technical Datasheet. Evonik, Essen, Germany, October (2016).
  17. Moon J, Kim TK, VanSaders B, Choi C, Liu ZW, Jin SH, Chen RK, Sol. Energy Mater. Sol. Cells, 134, 417, 2015
  18. Higgins JS, Lipson JEG, White RP, Phil. Trans. R. Soc. A, 368, 1009, 2010
  19. Marciniak A, Int. J. Mol. Sci., 11(5), 1973, 2010
  20. Marzocca AJ, Garraza ALR, Mansilla MA, Polym. Test, 29, 119, 2010
  21. Belmares M, Blanco M, Goddard A, Ross RB, Caldwell G, Chou SH, Pham J, Olofson PM, Thomas C, J. Comput. Chem., 25, 1814, 2004
  22. Young N, Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide. Ph.D. Dissertation, University of California Berkeley, Berkeley, CA, USA (2014).
  23. Robeson L, Polymer Blends: a Comprehensive Review, Hanser, Cinncinati, USA (2007).
  24. Litton R, Challenges and solutions Solvent technology for present and future air quality regulations. Eastman Chemical Company, Kingsport, TN, USA (2013).
  25. Shi J, Steric Stabilization. Center for Industrial Sensors and Measurements, Ohio State University: Columbus, Ohio, USA (2002).
  26. Anderson R, “Stress Free Coatings Made Possible by Solvents Eastman Chemical Company, Kingsport, TN, USA (2004).
  27. Polymer Database (2017) Names and Identifiers of Polymer. http://polymerdatabase.com/polymers/Polymethylphenylsiloxane.html(accessed 3/7/2018).
  28. Floudas G, Paluch M, Grzybowski A, Ngai KL, Molecular Dynamics of Glass Forming Systems. Springer, New York, USA (2011).
  29. Technical Background Silicon Resins. Evonik, Essen, Germany (2014).
  30. United States Environmental Protection Agency (Chemistry Dashboard), https://comptox.epa.gov/dashboard (accessed Mar 14, 2018).
  31. Chickos J, Acree W, J. Phys. Chem., 32, 1880, 2013
  32. Mackay D, Wessenback I, Environ. Sci. Technol., 48, 10259-, 2014
  33. Pubchem, https://pubchem.ncbi.nlm.nih.gov (accessed Mar 14, 2018).
  34. Ashiri R, Nemati A, Ghamsari S, Ceram. Int., 40, 8613, 2014
  35. Dabral M, Francis LF, Scriven LE, AIChE J., 48(1), 25, 2002
  36. Katsogiannis K, Vladisavljevic G, Georgiadou S, Eur. Polym. J., 69, 284, 2015
  37. California Air Resources Board, https://www.arb.ca.gov/coatings/arch/rules/VOClimits.pdf (accessed Mar 14, 2018).
  38. Pyromark High Temperature Paint 2500 Flat Black (MSDS No. LACO1508007), LA-CO Industries, Elk Grove Village, IL, USA (2012).
  39. Joesph R, Metal Finishing, 108, 78, 2010
  40. California Air Resources Board, https://www.arb.ca.gov/consprod/regs/2015/mir_tables_final_ 1-22-15.pdf (accessed Mar 14, 2018).
  41. California Air Resources Board, https://www.arb.ca.gov/consprod/regs/2015/article_3_final_1-22-15.pdf (accessed Mar 14, 2018).
  42. Carter W, Pierce J, Luo D, Malkina I, Atmos. Environ., 29, 2499, 1995