Issue
Korean Journal of Chemical Engineering,
Vol.36, No.6, 988-995, 2019
One-pot synthesis of highly stable and concentrated silver nanoparticles with enhanced catalytic activity
Well-dispersed silver nanoparticles (AgNPs) were synthesized using a benign, one-pot process based on a low-cost wet chemistry technique. Monoethanolamine was used as a strong reducing agent and poly(acrylic acid) (PAA) was used as a stabilizing agent. After the addition of these reagents to a reaction system, one-pot synthesis of AgNPs was completed in ~45min at 75 °C with a reaction efficiency of 92.4%. The average particle size of the aqueous dispersion of AgNPs was 14.83±5.96 nm, and the dispersion remained stable even after 14 months in an ambient dark environment, which may be due to the electrostatic repulsion of the carboxylate anions of the stabilizing agent. The role of PAA in the stabilization of the AgNPs was analyzed via Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. The highly stable AgNPs in the aqueous system showed high catalytic activity for the reduction of methylene blue and p-nitrophenol in the presence of sodium borohydride as the reducing agent based on pseudo-first-order kinetics.
[References]
  1. Mayer KM, Hafner JH, Chem. Rev., 111(6), 3828, 2011
  2. Jin R, Nanoscale, 7, 1549, 2015
  3. Li YN, Wu YL, Ong BS, J. Am. Chem. Soc., 127(10), 3266, 2005
  4. Shen W, Zhang X, Huang Q, Xu Q, Song W, Nanoscale, 6, 1622, 2014
  5. Potara M, Gabudean AM, Astilean S, J. Mater. Chem., 21, 3625, 2011
  6. Baccarin M, Janegitz BC, Berte R, Vicentini FC, Banks CE, Fatibello O, Zucolotto V, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 58, 97, 2016
  7. Chen X, Schluesener HJ, Toxicol. Lett., 176, 1, 2008
  8. Zhang WC, Sun Y, Zhang L, Ind. Eng. Chem. Res., 54(25), 6480, 2015
  9. Rai M, Yadav A, Gade A, Biotechnol. Adv., 27, 76, 2009
  10. Agnihotri S, Mukherji S, Mukherji SJRA, Rsc Adv., 4, 3974, 2014
  11. Toh HS, Jurkschat K, Compton RG, Chemistry, 21, 2998, 2015
  12. Mandal S, Gole A, Lala N, Gonnade R, Ganvir V, Sastry M, Langmuir, 17(20), 6262, 2001
  13. Lu Y, Liu GL, Lee LP, Nano Lett., 5, 5, 2005
  14. Wang Y, Wong JF, Teng X, Lin XZ, Yang H, Nano Lett., 3, 1555, 2003
  15. William WY, Emmanuel C, Christie MS, Rebekah D, Vicki LC, Nanotechnology, 17, 4483, 2006
  16. Gu WWAB, Concentrated Dispersions Theory, Experiment, and Applications, American Chemical Society, Wasgington DC (2004).
  17. Devi HS, Singh NR, Singh TD, Arab. J. Sci. Eng., 41, 2249, 2016
  18. Liu YS, Chen SM, Zhong L, Wu GZ, Radiat. Phys. Chem., 78, 251, 2009
  19. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B, Res. Pharm. Sci., 9, 385, 2014
  20. Huang QJ, Shen WF, Xu QS, Tan RQ, Song WJ, Mater. Chem. Phys., 147(3), 550, 2014
  21. Magdassi S, Grouchko M, Berezin O, Kamyshny A, Acs Nano, 4, 1943, 2010
  22. Shon YS, Cutler E, Langmuir, 20(16), 6626, 2004
  23. Sondi I, Goia DV, Matijevic E, J. Colloid Interface Sci., 260(1), 75, 2003
  24. Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P, Nanoscale, 10, 18, 2018
  25. Toisawa K, Hayashi Y, Takizawa H, Mater. Trans., 51, 1764, 2010
  26. Mari A, Imperatori P, Marchegiani G, Pilloni L, Mezzi A, Kaciulis S, Cannas C, Meneghini C, Mobilio S, Suber L, Langmuir, 26(19), 15561, 2010
  27. Yang JP, Yin HJ, Jia JJ, Wei Y, Langmuir, 27(8), 5047, 2011
  28. Molnar RM, Bodnar M, Hartmann JF, Janos B, Colloid Polym. Sci., 287, 739, 2009
  29. Ge J, Hu Y, Biasini M, Dong C, Guo J, Beyermann WP, Yin Y, Chemistry, 13, 7153, 2007
  30. Hu YX, Ge JP, Lim D, Zhang TR, Yin YD, J. Solid State Chem., 181, 1524, 2008
  31. Ge J, Hu Y, Biasini M, Beyermann WP, Yin Y, Angew. Chem.-Int. Edit., 46, 4342, 2007
  32. Kastner C, Thunemann AF, Langmuir, 32(29), 7383, 2016
  33. Sau TK, Pal A, Pal T, J. Phys. Chem. B, 105(38), 9266, 2001
  34. Zheng ZM, Huang QL, Guan H, Liu SY, Rsc Adv., 5, 69790, 2015
  35. Billingham J, Breen C, Yarwood J, Vib. Spectrosc., 14, 19, 1997
  36. Dong J, Ozaki Y, Nakashima K, Macromolecules, 30(4), 1111, 1997
  37. Zhao X, An QD, Xiao ZY, Zhai SR, Shi Z, Chinese J. Catal., 39, 1842, 2018
  38. Mao H, Ji CG, Liu MH, Cao ZQ, Sun DY, Xing ZQ, Chen X, Zhang Y, Song XM, Appl. Surf. Sci., 434, 522, 2018
  39. Begum R, Farooqi ZH, Butt Z, Wu Q, Wu W, Irfan A, J. Environ. Sci., 72, 43, 2018
  40. Xie Y, Yan B, Xu H, Chen J, Liu Q, Deng Y, Zeng H, ACS Appl. Mater. Inter., 6, 8845, 2014
  41. Yao T, Cui T, Wang H, Xu L, Cui F, Wu J, Nanoscale, 6, 7666, 2014
  42. Sahoo PK, Kumar N, Thiyagarajan S, Thakur D, Panda HS, Acs Sustain. Chem. Eng., 6, 7475, 2018
  43. Islam MT, Dominguez N, Ahsan MA, Dominguez-Cisneros H, Zuniga P, Alvarez PJJ, Noveron JC, J. Environ. Chem. Eng., 5, 4185, 2017
  44. Luo J, Zhang N, Lai JP, Liu R, Liu XY, J. Hazard. Mater., 300, 615, 2015
  45. Shi GM, Li ST, Shi FN, Shi XF, Lv SH, Cheng XB, J. Colloid Interface Sci., 555, 170, 2018
  46. Bano M, Ahirwar D, Thomas M, Naikoo GA, Sheikh MUD, Khan F, New J. Chem., 40, 6787, 2016
  47. Gao C, An QD, Xiao ZY, Zhai SR, Zhai B, Shi Z, New J. Chem., 41, 13327, 2017
  48. Lv ZS, Zhu XY, Meng HB, Feng JJ, Wang AJ, J. Colloid Interface Sci., 538, 349, 2018
  49. Ju YY, Li X, Feng J, Ma YH, Hu J, Chen XG, Appl. Surf. Sci., 316, 132, 2014
  50. Hu J, Dong YL, Chen XJ, Zhang HJ, Zheng JM, Wang Q, Chen XG, Chem. Eng. J., 236, 1, 2014
  51. Zhang YX, Fang H, Zhang YQ, Wen M, Wu DD, Wu QS, J. Colloid Interface Sci., 535, 499, 2019
  52. Veisi H, Kazemi S, Mohammadi P, Safarimehr P, Hemmati S, Polyhedron, 157, 232, 2019