Issue
Korean Journal of Chemical Engineering,
Vol.36, No.6, 954-964, 2019
Multiple transesterifications in a reactive dividing wall column integrated with a heat pump
This study addresses a reactive dividing wall column (RDWC) integrated with a vapor recompression heat pump (VRHP). The reaction applied to the system contains two consecutive transesterifications of dimethyl carbonate (DMC) and ethanol, which yields methanol (MeOH) as a by-product, ethyl methyl carbonate as an intermediate product and diethyl carbonate (DEC) as the final desired product. DEC is the only stable node of the five component reacting mixture. The location of the reaction region and feed stages affects the purity of the top product because the unstable node product is not pure MeOH but DMC-MeOH azeotrope. The VRHP pressurizes the top gas product stream and the compressed gas provides heat to the bottom stream of the ethanol recovery section. The optimization procedure minimizes the power consumption of the compressor with respect to the gas flow rate. The energy consumption in the RDWC integrated with a VRHP is reduced by 32.1% and the total utility cost is also cut by 21.6% compared with the conventional RDWC.
[References]
  1. Gadalla MA, Olujic Z, Jansens PJ, Jobson M, Smith R, Environ. Sci. Technol., 39, 6860, 2005
  2. Park JH, Kang RH, Lee JW, Korean J. Chem. Eng., 34(6), 1763, 2017
  3. Kang RH, Park JH, Kang DH, Lee JW, Korean J. Chem. Eng., 35(3), 734, 2018
  4. Zhang J, Lee JW, Carbon, 53, 216, 2013
  5. Zhang J, Yu Z, Atkins D, Lee JW, J. Phys. Chem. C, 115, 8386, 2011
  6. Kim YK, Kim GM, Lee JW, J. Mater. Chem. A, 3, 10919, 2015
  7. Gao X, Yin X, Yang S, Yang D, Korean J. Chem. Eng., 36(1), 77, 2019
  8. Kim YH, Korean J. Chem. Eng., 33(9), 2513, 2016
  9. Long NVD, Lee MY, Korean J. Chem. Eng., 30(2), 286, 2013
  10. Siirola JJ, AIChE Symposium Series, New York, NY: American Institute of Chemical Engineers, 91, 222 (1995).
  11. Malone MF, Doherty MF, Ind. Eng. Chem. Res., 39, 3953, 2000
  12. Guo Z, Ghufran M, Lee JW, AIChE J., 49(12), 3161, 2003
  13. Guo Z, Lee JW, AIChE J., 50(7), 1484, 2004
  14. Chin J, Lee JW, Choe J, AIChE J., 52(5), 1790, 2006
  15. Kang D, Lee JW, Korean Chem. Eng. Res., 52(6), 713, 2014
  16. Kang D, Lee JW, Comput. Aided Chem. Eng., 34, 351, 2014
  17. Lee SH, Choi WY, Kim KJ, Chang DJ, Lee JW, Chem. Eng. Process., 123, 249, 2018
  18. An DC, Cai WF, Xia M, Zhang XB, Wang FM, Chem. Eng. Process., 92, 45, 2015
  19. Kang D, Lee JW, Ind. Eng. Chem. Res., 54(12), 3175, 2015
  20. Mueller I, Kenig EY, Ind. Eng. Chem. Res., 46(11), 3709, 2007
  21. Zheng L, Cai WF, Zhang XB, Wang Y, Chem. Eng. Process., 111, 127, 2017
  22. Chin J, Lee JW, Ind. Eng. Chem. Res., 47(11), 3930, 2008
  23. Gao XX, Ma ZF, Yang LM, Ma JQ, Ind. Eng. Chem. Res., 52(33), 11695, 2013
  24. Zhu Z, Liu X, Cao Y, Liang S, Wang Y, Korean J. Chem. Eng., 34(3), 866, 2017
  25. Feng SY, Lyu XY, Ye Q, Xia H, Li R, Suo XM, Ind. Eng. Chem. Res., 55(43), 11305, 2016
  26. Feng SY, Ye Q, Xia H, Li R, Suo XM, Chem. Eng. Res. Des., 125, 204, 2017
  27. Ferre JA, Castells F, Flores J, Ind. Eng. Chem. Process Des. Dev., 24, 128, 1985
  28. Rodriguez A, Canosa J, Dominguez A, Tojo J, Fluid Phase Equilib., 201(1), 187, 2002
  29. Rodriguez A, Canosa J, Dominguez A, Tojo J, J. Chem. Eng. Data, 48(1), 86, 2003
  30. Zhang XM, Zuo JA, Jian CG, J. Chem. Eng. Data, 55(11), 4896, 2010
  31. Luo HP, Xiao WD, Zhu KH, Fluid Phase Equilib., 175(1-2), 91, 2000
  32. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/.
  33. Luo HP, Xiao WD, Chem. Eng. Sci., 56(2), 403, 2001
  34. Keller T, Holtbruegge J, Niesbach A, Gorak A, Ind. Eng. Chem. Res., 50(19), 11073, 2011
  35. Lee JW, Ko Y, Jung Y, Lee K, Yoon E, Comput. Chem. Eng., 21, S1105, 1997
  36. Doherty MF, Chem. Eng. Sci., 40, 1885, 1985
  37. Wei HY, Rokhmah A, Handogo R, Chien IL, J. Process Control, 21(8), 1193, 2011