Issue
Korean Journal of Chemical Engineering,
Vol.36, No.6, 942-953, 2019
Adsorption of p-chlorophenol and p-nitrophenol in single and binary systems from solution using magnetic activated carbon
Magnetic activated carbon (MAC) was prepared by co-precipitation. These particles had attractive adsorption capacity and could be easily separated from aqueous. MAC was used as adsorbent to remove p-chlorophenol (p- CP) and p-nitrophenol (p-NP) from solution in single and binary systems. In a single system, the equilibrium time was 60 min, the best initial pH was 3-8 and 3-6 for p-CP or p-NP adsorption, respectively. The existence of salt ions had little influence on the adsorption process, while surfactant had negative influence. The adsorption quantity from experiments was up to 97.3mg·g-1 for p-CP and 116mg·g-1 for p-NP at 293 K, respectively. Freundlich model and pseudosecond- order kinetic model fitted well the adsorption behavior. Thermodynamic parameters were calculated and the results showed that the process was spontaneous, exothermic and entropy production in nature. In addition, p-CP or p- NP-loaded MAC could be well reused by 0.01 mol·L-1 sodium hydroxide solution as regeneration agent. Kinetic process of desorption was fitted best by pseudo-second-order kinetic model. Results from the binary system showed that competitive adsorption existed during the process, and p-NP adsorption on MAC was easier than p-CP. Freundlich model well fitted the adsorption behavior in the binary system. Hydrogen-bonding, electron donor-acceptor and π-π interactions may be the main mechanisms of adsorption. MAC proved to be an excellent adsorbent for the removal of p-CP and p-NP from solution.
[References]
  1. Anbia M, Khoshbooei S, J. Nanostruct. Chem., 5, 139, 2015
  2. Koubaissy B, Toufaily J, El-murr M, Hamieh T, Magnoux P, Joly G, Phys. Procedia, 21, 220, 2011
  3. Rad LR, Haririan I, Divsar F, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 136, 423, 2015
  4. Acosta CA, Pasquali C, Paniagua G, Garcinuno RM, Hernando PF, Environ. Pollut., 236, 265, 2018
  5. Borras C, Laredo T, Scharifker BR, Electrochim. Acta, 48(19), 2775, 2003
  6. Ozaki H, Li H, Water Res., 36, 123, 2002
  7. Li Y, Loh KC, J. Appl. Polym. Sci., 105, 1732, 2010
  8. Lin SH, Wang CS, J. Hazard. Mater., 90(2), 205, 2002
  9. Chu S, Zheng XM, Kong F, Wu GH, Luo LL, Guo Y, Liu HL, Wang Y, Yu HX, Zou ZG, Mater. Chem. Phys., 129(3), 1184, 2011
  10. Wu J, Yu HQ, J. Hazard. Mater., 137(1), 498, 2006
  11. Su J, Lin HF, Wang QP, Xie ZM, Chen ZL, Desalination, 269(1-3), 163, 2011
  12. Salman M, Athar M, Farooq U, Rev. Environ. Sci. Bio., 14, 211, 2015
  13. Wang JL, Chen C, Biotechnol. Adv., 17, 195, 2009
  14. Bhatnagar A, Hogland W, Marques M, Sillanpaa M, Chem. Eng. J., 219, 499, 2013
  15. Canizares P, Carmona M, Baraza O, Delgado A, Rodrigo MA, J. Hazard. Mater., 131(1-3), 243, 2006
  16. Yang N, Zhu SM, Zhang D, Xu S, Mater. Lett., 62, 645, 2008
  17. Singh S, Res. J. Chem. Sci., 6, 361, 2015
  18. Han S, Zhao F, Sun J, Wang B, Wei RY, Yan SQ, J. Magn. Magn. Mater., 341, 133, 2013
  19. Rong YC, Li H, Xiao LH, Wang Q, Hu YY, Zhang SS, Han RP, Desalin. Water. Treat., 106, 273, 2018
  20. Kakavandi B, Jahangiri-rad M, Rafiee M, Esfahani AR, Babaei AA, Microporous Mesoporous Mater., 231, 192, 2016
  21. Lassalle VL, Zysler RD, Ferreira ML, Mater. Chem. Phys., 130(1-2), 624, 2011
  22. Oliveira LCA, Rios R, Fabris JD, Garg V, Sapag K, Lago RM, Carbon, 40, 2177, 2002
  23. Toth A, Torocsik A, Tombacz E, Laszlo K, J. Colloid Interface Sci., 387, 244, 2012
  24. Wei QM, Nakato T, Microporous Mesoporous Mater., 96, 84, 2006
  25. Mohamed EF, Andriantsiferana C, Wilhelm AM, Delmas H, Environ. Technol., 32, 1325, 2011
  26. Jiao YB, Han DL, Lu YZ, Rong YC, Fang LY, Liu YL, Han RP, Desalin. Water. Treat., 77, 247, 2017
  27. Zhou T, Fang LY, Wang XW, Han MY, Zhang SS, Han RP, Desalin. Water Treat., 70, 294, 2017
  28. Battisha IK, Afify HH, Ibrahim M, J. Magn. Magn. Mater., 306, 211, 2006
  29. Song JY, Zou WH, Bian YY, Su FY, Han RP, Desalination, 265(1-3), 119, 2011
  30. Zhang RD, Zhang JH, Zhang XN, Dou CC, Han RP, J. Taiwan Inst. Chem. E., 45, 2578, 2014
  31. Li N, Chen J, Shi YP, Anal. Chim. Acta, 949, 23, 2017
  32. Mihoc G, Ianos R, Pacurariu C, Water Sci. Technol., 69, 385, 2014
  33. Zhang B, Li F, Wu T, Sun DJ, Li YJ, Colloids Surf. A: Physicochem. Eng. Asp., 464, 78, 2015
  34. Srivastava SK, Tyagi R, Water Res., 29, 483, 1995
  35. Zhang F, Wei Z, Zhang WN, Cui HY, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 182, 116, 2017
  36. Ho YS, McKay G, Process Biochem., 34(5), 451, 1999
  37. Cheung CW, Porter JF, McKay G, Sep. Purif. Technol., 19(1-2), 55, 2000
  38. Hameed BH, Rahman AA, J. Hazard. Mater., 160(2-3), 576, 2008
  39. Ofomaja AE, Unuabonah EI, Carbohydr. Polym., 83, 1192, 2011
  40. Vasu AE, E-J. Chem., 5, 224, 2012
  41. Bello IA, Oladipo MA, Giwa AA, Adeoye DO, Int. J. Basic Appl. Sci., 2, 79, 2013
  42. Li JM, Meng XG, Hu CW, Du J, Bioresour. Technol., 100(3), 1168, 2009
  43. Arafat HA, Franz M, Pinto NG, Langmuir, 15(18), 5997, 1999
  44. Yang K, Jing Q, Wu W, Zhu L, Xing B, Environ. Sci. Technol., 44, 681, 2010
  45. Ahmaruzzaman M, Sharma DK, J. Colloid Interface Sci., 287(1), 14, 2005
  46. Halhouli KA, Darwish NA, Al-Jahmany YY, Sep. Sci. Technol., 32(18), 3027, 1997
  47. Crini G, Dyes Pigment., 77, 145, 2008
  48. Han RP, Wang YF, Han P, Shi J, Yang J, Lu YS, J. Hazard. Mater., 137(1), 550, 2006
  49. Chabani M, Amrane A, Bensmaili A, Chem. Eng. J., 125(2), 111, 2006
  50. Anirudhan TS, Ramachandran M, J. Water Process Eng., 1, 46, 2014
  51. Chang CY, Tsai WT, Ing CH, Chang CF, J. Colloid Interface Sci., 260(2), 273, 2003
  52. Fan Y, Yang R, Lei Z, Liu N, Lv J, Zhai S, Zhai B, Wang L, Korean J. Chem. Eng., 33(4), 1416, 2016
  53. Zhou T, Lu WZ, Liu LF, Zhu HM, Jiao YB, Zhang SS, Han RP, J. Mol. Liq., 211, 909, 2015
  54. Nguyen ML, Juang RS, Biotechnol. Bioproc. E., 20, 614, 2015
  55. Chern JM, Chien YW, Water Res., 37, 2347, 2003
  56. Ha SR, Vinitnantharat S, Environ. Technol., 21, 387, 2000