Issue
Korean Journal of Chemical Engineering,
Vol.36, No.6, 914-928, 2019
Enhancing natural gas dehydration performance using electrospun nanofibrous sol-gel coated mixed matrix membranes
The dehydration process of natural gas was investigated by mixed matrix membranes (MMM), which were fabricated by electrospinning and sol-gel coating methods. Silica and titania nanoparticles (NPs) were incorporated into the polymer matrix via sol-gel method. The fabricated MMMs were characterized by field emission electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Dehydration tests were carried out for wet pure methane and natural gas streams individually. The effects of different process parameters, including feed and sweep gas flow rates, moisture content in the feed, feed pressure and other hydrocarbons in the feed were investigated. The prepared electrospun nanofibrous supports (ESNS) have smaller fiber diameters in comparison to previously reported works, and with regard to the commercially available materials, contribute to higher water vapor permeation. The results showed that by increasing the feed pressure from 2.5 to 15 bar for the membranes without NPs, the permeance of methane and water vapor was decreased by 8.2 and 29%, respectively. It was also observed that the permeance of heavier hydrocarbons in Pebax 1657 membrane is higher than methane, leading to the increase of H2O/CH4 selectivity and the loss of heavier hydrocarbons. Finally, determining the resistances of the support and selective layers based on the existing empirical relations demonstrated that the total resistance to water vapor transmission had decreased by 75.2% using ESNS instead of microporous supports (MPS). In addition, the contribution of support layer resistances was decreased from 67% in MPS membranes to less than 30% in ESNS ones.
[References]
  1. Sakheta A, Zahid U, Chem. Eng. Res. Des., 137, 70, 2018
  2. Kong ZY, Mahmoud A, Liu S, Sunarso J, J. Nat. Gas Sci. Eng., 56, 486, 2018
  3. Neagu M, Cursaru DL, J. Nat. Gas Sci. Eng., 37, 327, 2017
  4. Santos MGRS, Correia LMS, de Medeiros JL, Araujo ODF, Cheric, 149, 760, 2017
  5. Shooshtari SHR, Shahsavand A, Appl. Therm. Eng., 139, 76, 2018
  6. Dalane K, Svendsen HF, Hillestad M, Deng LY, J. Membr. Sci., 556, 263, 2018
  7. Scholes CA, Stevens GW, Kentish SE, Fuel, 96(1), 15, 2012
  8. Baker RW, Vapor and Gas Separation by Membranes, in: Adv. Membr. Technol. Appl., Wiley, New York (2008).
  9. Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, Smalley RE, Adv. Mater., 16(1), 58, 2004
  10. Ge JJ, Hou HQ, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD, J. Am. Chem. Soc., 126(48), 15754, 2004
  11. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA, Langmuir, 30(51), 15504, 2014
  12. Ji L, Zhang X, Mater. Lett., 62, 2165, 2008
  13. Jung HR, Ju DH, Lee WJ, Zhang XW, Kotek R, Electrochim. Acta, 54(13), 3630, 2009
  14. Yang JP, Chen ZK, Yang G, Fu SY, Ye L, Polymer, 49(13-14), 3168, 2008
  15. Von Wroblewski S, Ann. Phys. u Chem., 8, 29, 1879
  16. Srivastava V, Gusain D, Sharma YC, Ceram. Int., 39, 9803, 2013
  17. Wu CL, Zhang MQ, Rong MZ, Friedrich K, Compos. Sci. Technol., 65, 635, 2005
  18. Chiang CL, Chang RC, Chiu YC, Thermochim. Acta, 453(2), 97, 2007
  19. Setoodeh N, Darvishi P, Lashanizadegan A, J. Dispersion Sci. Technol., 39, 711, 2017
  20. Setoodeh N, Darvishi P, Lashanizadegan A, J. Dispersion Sci. Technol., 39, 452, 2017
  21. Potreck J, Nijmeijer K, Kosinski T, Wessling M, J. Membr. Sci., 338(1-2), 11, 2009
  22. Barrie JA, Haegg MB, Membranes in gas separation, in: 4th BOC Priest. Conf., 89 (1986).
  23. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(3), 415, 2000
  24. Mulder M, Basic principles of membrane technology, Kluwer Academic Publishers, London (1996).
  25. Barbi V, Funari SS, Gehrke R, Scharnagl N, Stribeck N, Macromolecules, 36(3), 749, 2003
  26. Metz SJ, Mulder MHV, Wessling M, Film, 37, 4590, 2004
  27. Watari T, Wang HY, Kuwahara K, Tanaka K, Kita H, Okamoto K, J. Membr. Sci., 219(1-2), 137, 2003
  28. Chiou JS, Paul DR, Ind. Eng. Chem. Res., 27, 2161, 1988
  29. Chen G, Zhang XS, Wang JH, Zhang SB, J. Appl. Polym. Sci., 106(5), 3179, 2007
  30. Lin H, Thompson SM, Serbanescu-Martin A, Wijmans JG, Amo KD, Lokhandwala KA, Merkel TC, J. Membr. Sci., 413-414, 70, 2012
  31. Akhtar FH, Kumar M, Peinemann KV, J. Membr. Sci., 525, 187, 2016
  32. Ko FK, Wan Y, Introduction to nanofiber materials, Cambridge University Press, New York (2014).
  33. Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B, Environ. Sci. Technol., 39, 7684, 2005
  34. Yoon K, Kim K, Wang XF, Fang DF, Hsiao BS, Chu B, Polymer, 47(7), 2434, 2006
  35. Gibson DRP, Schreuder-Gibson HL, Gibson P, Schreuder-Gibson H, Rivin D, Colloids Surf. A: Physicochem. Eng. Asp., 188, 469, 2001
  36. Grafe T, Graham K, Int. Nanwovens Tech. Conf., 24 (2002).
  37. Barhate RS, Ramakrishna S, J. Membr. Sci., 296(1-2), 1, 2007
  38. Huizing R, Merida W, Ko F, J. Membr. Sci., 461, 146, 2014
  39. Poormohammadian SJ, Darvishi P, Dezfuli AMG, Chin. J. Chem. Eng., 27, 100, 2018
  40. Metz SJ, van de Ven WJC, Potreck J, Mulder MHV, Wessling M, J. Membr. Sci., 251(1-2), 29, 2005
  41. Metz SJ, van de Ven WJC, Mulder MHV, Wessling M, J. Membr. Sci., 266(1-2), 51, 2005
  42. Satterfield MB, Benziger JB, J. Phys. Chem. B, 112(12), 3693, 2008
  43. Ji L, Saquing C, Khan SA, Zhang X, Nanotechnology, 19, 85605, 2008
  44. Wang MJ, Wolff S, Donnet JB, Rubber Chem. Technol., 64, 714, 1991
  45. Sawicka KM, Gouma P, J. Nanoparticle Res., 8, 769, 2006
  46. Gao J, Gao T, Sailor MJ, Appl. Phys. Lett., 77, 901, 2000
  47. Nagel H, Hezel R, Sol. Energy Mater. Sol. Cells, 65, 71, 2001
  48. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM, Nat. Mater., 6(4), 278, 2007
  49. Roy P, Kim D, Lee K, Spiecker E, Schmuki P, Nanoscale, 2, 45, 2010
  50. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735, 1995
  51. Fujishima A, Honda K, Nature, 238, 37, 1972
  52. Wang X, Fujimaki M, Awazu K, Opt. Express., 13, 1486, 2005
  53. Kim HM, Miyaji F, Kokubo T, Nakamura T, J. Biomed. Mater. Res., 32, 409, 1996
  54. Alvarez D, Novoa XR, Perez C, Prog. Org. Coat., 96, 3, 2015
  55. Wang D, Bierwagen G, Prog. Org. Coat., 64, 327, 2009
  56. Lin HQ, Thompson SM, Serbanescu-Martin A, Wijmans JG, Amo KD, Lokhandwala KA, Low BT, Merkel TC, J. Membr. Sci., 432, 106, 2013
  57. Ingole PG, Baig MI, Choi WK, Lee HK, J. Mater. Chem. A, 4, 5592, 2016
  58. Xing R, Rao YX, TeGrotenhuis W, Canfield N, Zheng F, Winiarski DW, Liu W, Chem. Eng. Sci., 104, 596, 2013
  59. Baumgarten PK, J. Colloid Interface Sci., 36, 71, 1971
  60. Doshi J, Reneker DH, Sect. Title Text. Fibers, 35, 151, 1995
  61. Fong H, Chun I, Reneker DH, Polymer, 40(16), 4585, 1999
  62. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261, 2001
  63. Demir MM, Yilgor I, Yilgor E, Erman B, Polymer, 43(11), 3303, 2002
  64. Van Franeker JJ, Turbiez M, Li W, Wienk MM, Janssen RAJ, Nat. Commun., 6, 6229, 2015
  65. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62, 1968
  66. Sakka S, SoleGel Process and Applications, in: Handb. Adv. Ceram. Mater. Appl. Process. Prop., 883 (2013).
  67. Baker RW, Membrane Technology and Applications, Wiley, New York (2004).
  68. Shen Y, Lua AC, Chem. Eng. J., 188, 199, 2012
  69. Bondi A, J. Phys. Chem., 68, 441, 1964
  70. Zhao YH, Abraham MH, Zissimos AM, J. Org. Chem., 68, 7368, 2003
  71. Jomekian A, Behbahani RM, Mohammadi T, Kargari A, Korean J. Chem. Eng., 34(2), 440, 2017
  72. Bondar VI, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 37(17), 2463, 1999
  73. Kim JH, Lee YM, J. Membr. Sci., 193(2), 209, 2001
  74. Khosravi A, Sadeghi M, Banadkohi HZ, Talakesh MM, Ind. Eng. Chem. Res., 53(5), 2011, 2014
  75. Ma CG, Rong MZ, Zhang MQ, Friedrich K, Polym. Eng. Sci., 45(4), 529, 2005
  76. Choudalakis G, Gotsis AD, Curr. Opin. Colloid Interface Sci., 17, 132, 2012
  77. Bondar VI, Freeman BD, Pinnau I, J. Polym. Sci. B: Polym. Phys., 38(15), 2051, 2000
  78. Wang KL, Mccrayb SH, Newboldb DD, Cussler EL, J. Membr. Sci., 72, 231, 1992
  79. Baker RW, Membrane Technology and Applications, Wiley, New York (2012).
  80. Merkel TC, Bondar V, Nagai K, Freeman BD, J. Polym. Sci. B: Polym. Phys., 38(2), 273, 2000
  81. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61, 1999
  82. Massman WJ, Atmos. Environ., 32, 1111, 1998
  83. Chen GQ, Scholes CA, Qiao GG, Kentish SE, J. Membr. Sci., 379(1-2), 479, 2011
  84. Yave W, Shishatskiy S, Abetz V, Matson S, Litvinova E, Khotimskiy V, Peinemann KV, Macromol. Chem. Phys., 208, 2412, 2007
  85. Wahab MSA, Sunarti AR, Membr. Sci. Technol., 2, 78, 2015
  86. Jay MS, Tripodi MK, J. Membr. Sci., 8, 233, 1981
  87. Wijmans JG, Athayde AL, Daniels R, Ly JH, Kamaruddin HD, Pinnau I, J. Membr. Sci., 109(1), 135, 1996
  88. Kneifel K, Nowak S, Albrecht W, Hilke R, Just R, Peinemann KV, J. Membr. Sci., 276(1-2), 241, 2006
  89. Basafa M, Chenar MP, Sep. Sci. Technol., 49(16), 2465, 2014
  90. Dalton PD, Klee D, Moller M, Polymer, 46(3), 611, 2005
  91. Khajavi R, Abbasipour M, Sci. Iran., 19, 2029, 2012