Issue
Korean Journal of Chemical Engineering,
Vol.36, No.6, 909-913, 2019
Fed-batch acetone-butanol-ethanol fermentation using immobilized Clostridium acetobutylicum in calcium alginate beads
Butanol fermentation has garnered renewed interest due to the search for renewable sources of energy. Although acetone-butanol-ethanol (ABE) fermentation has been studied for a long time, the methods utilized yield either a high butanol/ABE productivity and low titer or high butanol/ABE titer at a low productivity. In this work, we report the utilization of a highly dense calcium alginate immobilized Clostridium acetobutylicum cells in combination with fed-batch mode of fermentation to attain a high butanol/ABE productivity and concentration. A butanol concentration of up to 21.6 g/L was attained with a productivity of 0.40 g/L·hr, which is a 65% and 192% improvement to the conventional batch fermentation.
[References]
  1. Garcia V, Pakkila J, Ojamo H, Muurinen E, Keiski RL, Energy Rev., 15, 964, 2011
  2. Ndaba B, Chiyanzu I, Marx S, Biotechnol. Rep., 8, 1, 2015
  3. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS, Biotechnol. Bioeng., 101(2), 209, 2008
  4. Trindade WRDS, Santos RGD, Renew. Sust. Energ. Rev., 69, 642, 2017
  5. Sauer M, FEMS Microbiol. Lett., 363, fnw134, 2016
  6. Xue C, Zhang X, Wang J, Xiao M, Chen L, Bai F, Biotechnol. Biofuels, 10, 148, 2017
  7. Jones DT, Woods DR, Microbiol. Rev., 50, 484, 1986
  8. Mariano AP, Filho RM, Bioenerg. Res., 5, 504, 2012
  9. Outram V, Lalander CA, Lee JGM, Davies ET, Harvey AP, Biotechnol. Prog., 33(3), 563, 2017
  10. Durre P, Biotechnol. J., 2, 1525, 2007
  11. Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY, Lee SY, mBio, 3, e00314, 2012
  12. Herman NA, Li J, Bedi R, Turchi B, Liu X, Miller MJ, Zhang W, Appl. Environ. Microbiol., 83, e02942, 2017
  13. Sarchami T, Munch G, Johnson E, Kießlich S, Rehmann L, Fermentation, 2, 13, 2016
  14. Zhu C, Chen LJ, Xue C, Bai FW, Biotechnol. Biofuels, 11, 128, 2018
  15. Li SY, Chiang CJ, Tseng IT, He CR, Chao YP, FEMS Microbiol. Lett., 363, fnw107, 2016
  16. Allam RF, Shafei MS, Sallam LAR, Egyp. J. Biomed. Sci., 8, 104, 2001
  17. Sallam LAR, El-Refai AH, El-Zanati AE, Shafei MS, El-Ardi OAM, Arab J. Biotech., 7, 1, 2004
  18. Chang Z, Cai D, Wang Y, Chen CJ, Fu CH, Wang GQ, Qin PY, Wang Z, Tan TW, Bioresour. Technol., 205, 82, 2016
  19. Jeon YJ, Lee YY, Ann. N.Y. Acad. Sci., 506, 536, 1987
  20. Miller GL, Anal. Chem., 31, 426, 1959
  21. Ha SH, Mai NL, Koo YM, Process Biochem., 45(12), 1899, 2010
  22. Menchavez RN, Ha SH, Appl. Biochem. Biotechnol., 171(5), 1159, 2013
  23. Doremus MG, Linden JC, Moreira AR, Biotechnol. Bioeng., 27, 852, 1985
  24. Lamed RJ, Lobos JH, Su TM, Appl. Environ. Microbiol., 54, 1216, 1988
  25. Xia ML, Wang L, Yang ZX, Chen HZ, Biotechnol. Biofuels, 8, 225, 2015
  26. Alsaker KV, Papoutsakis ET, J. Bacteriol., 187, 7103, 2005
  27. Jones DT, Van Der Westhuizen A, Long S, Allcock ER, Reid SJ, Woods DR, Appl. Environ. Microbiol., 43, 1434, 1982
  28. Chang YH, Chang KS, Chen CY, Hsu CL, Chang TC, Jang HD, Fermentation, 4, 45, 2018
  29. Quiros C, Garcia LA, Diaz M, Process Biochem., 31(8), 813, 1996
  30. Jain D, Bar-Shalom D, Drug Dev. Ind. Pharm., 40, 1576, 2014
  31. Josef E, Zilberman M, Bianco-Peled H, Acta Biomater., 6, 4642, 2010
  32. Yerushalmi L, Volesky B, Szczesny T, Appl. Microbiol. Biotechnol., 22, 103, 1985
  33. Al-Shorgani NKN, Shukor H, Abdeshahian P, Kalil MS, Yusoff WMW, Hamid AA, Saudi J. Biol. Sci., 25, 1308, 2018
  34. Ezeji TC, Qureshi N, Blaschek HP, Appl. Microbiol. Biotechnol., 63(6), 653, 2004
  35. Qureshi N, Blaschek HP, Appl. Biochem. Biotechnol., 84, 225, 2000
  36. Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC, Appl. Microbiol. Biotechnol., 93, 881, 2012
  37. Choi YJ, Lee J, Jang YS, Lee SY, mBio, 5, e01524, 2014