Issue
Korean Journal of Chemical Engineering,
Vol.36, No.6, 903-908, 2019
Engineering Trichosporon oleaginosus for enhanced production of lipid from volatile fatty acids as carbon source
Trichosporon oleaginosus is one of the most promising hosts for microbial lipid production owing to its high-productivity. In an effort to develop an economical production process, we engineered T. oleaginosus towards high-lipid production from volatile fatty acids (VFA) derived from anaerobic fermentation of food waste. First, we established a method for labeling intracellular lipid with lipophilic BODIPY fluorescent dye. Next, a random library was constructed by treatment with a chemical mutagen, and high-lipid producers were screened using fluorescenceactivated cell sorting. Subsequently, one clone, N14, was successfully isolated, which exhibited 3-fold higher lipid production (19.4%) in VFA (6 g/L) media than the wild-type strain, and also showed increased lipid production in higher concentrations of VFA (18 or 24 g/L). Based on fatty acid methyl ester (FAME) analysis, N14 contained higher stearic acid (C18:0) and oleic acid (C18:1) content compared with those of the wild-type strain.
[References]
  1. Gujjari P, Suh SO, Coumes K, Zhou JJ, Mycologia, 103, 1110, 2011
  2. Yaguchi A, Rives D, Blenner M, AIMS Microbiol., 3, 227, 2017
  3. Meo A, Priebe XL, Weuster-Botz D, J. Biotechnol., 241, 1, 2017
  4. Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW, Bioresour. Technol., 135, 357, 2013
  5. Chi ZY, Zheng YB, Ma JW, Chen SL, Int. J. Hydrog. Energy, 36(16), 9542, 2011
  6. Xu X, Kim JY, Cho HU, Park HR, Park JM, Chem. Eng. J., 264, 735, 2014
  7. Gong Z, Shen H, Zhou W, Wang Y, Yang X, Zhao ZK, Biotechnol. Biofuels, 8, 189, 2015
  8. Kim MS, Li D, Choi OK, Sang BI, Chiang PC, Kim HO, Korean J. Chem. Eng., 34(10), 2678, 2017
  9. Lim SJ, Choi DW, Lee WG, Kwon S, Chang HN, Bioprocess Eng., 22, 543, 2000
  10. Kidanu WG, Trang PT, Yoon HH, Biotechnol. Bioprocess Eng., 22, 612, 2017
  11. Li D, Kim MS, Kim HJ, Choi OK, Sang BI, Chiang PC, Kim HO, Korean J. Chem. Eng., 35(1), 179, 2018
  12. Park GW, Fei Q, Jung K, Chang HN, Kim YC, Kim NJ, Choi JD, Kim S, Cho J, Biotechnol. J., 9, 1536, 2014
  13. Fei Q, Chang HN, Shang LA, Choi JDR, Kim N, Kang J, Bioresour. Technol., 102(3), 2695, 2011
  14. Close D, Ojumu J, Genome Announc., 4, e01235, 2016
  15. Kourist R, Bracharz F, Lorenzen J, Kracht ON, Chovatia M, et al., mBio, 6, e00918, 2015
  16. Gorner C, Redai V, Bracharz F, Schrepfer P, Garbe D, Bruck T, Green Chem., 18, 2037, 2016
  17. Yim SS, Bang HB, Kim YH, Lee YJ, Jeong GM, Jeong KJ, PLOS One, 9, e10822, 2014
  18. Choi SL, Rha E, Lee SJ, Kim H, Kwon K, Jeong YS, Rhee YH, Song JJ, Kim HS, Lee SG, ACS Synth. Biol., 3, 163, 2014
  19. Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ, Bioresour. Technol., 138, 30, 2013
  20. Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ, Biotechnol. Biofuels, 7, 117, 2014
  21. Yim SS, Choi JW, Lee SH, Jeong KJ, ACS Synth. Biol., 5, 334, 2014
  22. Hollinshead WD, Varman AM, You L, Hembree Z, Tang YJJ, Bioresour. Technol., 169, 462, 2014
  23. Liu J, Yuan M, Liu JN, Huang XF, Bioresour. Technol., 241, 645, 2017
  24. Chalima A, Oliver L, de Castro LF, Karnaouri A, Dietrich T, Topakas E, Fermentation, 3, 54, 2017
  25. Kameda E, Martins FF, Amaral PFF, Valoni EA, Coelho MAZ, Chem. Eng. Trans., 38, 529, 2014
  26. Stansell GR, Gray VM, Sym SD, J. Appl. Phycol., 24, 791, 2012
  27. Kinney AJ, Clemente TE, Fuel Process. Technol., 86(10), 1137, 2005
  28. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M, Renew. Sust. Energ. Rev., 16, 143, 2012