Issue
Korean Journal of Chemical Engineering,
Vol.36, No.5, 722-728, 2019
Production of syngas from dry reforming of bio-oil model compound in granulated blast furnace slag
The characterization of dry (CO2) reforming of bio-oil model compound (BMC) in granulated BF (blast furnace) slag for syngas production is presented in this study. The effects of temperature, CO2/C (the molar ratio of CO2 to C in the BMC), liquid hourly space velocity (LHSV) and granulated BF slag on the coke yield, combustible gas yield, syngas composition and lower heating value of the dry reforming process were investigated by fixed-bed experiments. The results indicated that using granulated BF slag as the heat carrier, temperature reaching 750 °C, CO2/C of 0.75 and LHSV of 0.45 h-1 could be the optimal condition for the dry reforming process, where the combustible gas yield and lower heating value were up to 1.85L/g and 23.00 kJ/g, respectively. Granulated BF slag showed positive effects on the dry reforming process, promoting the combustible gas yield and lower heating value and increasing the compositions of H2 and CO. Granulated BF slag could be used as a superior heat carrier for the dry reforming of BMC.
[References]
  1. Yao C, Tian H, Hu Z, Yin Y, Chen D, Yan X, Korean J. Chem. Eng., 35(2), 511, 2018
  2. Zhao S, Liu M, Zhao L, Lu J, Korean J. Chem. Eng., 34(12), 3077, 2017
  3. Cho S, Kim J, Korean J. Chem. Eng., 33(10), 2808, 2016
  4. Wang DN, Czernik S, Chornet E, Energy Fuels, 12(1), 19, 1998
  5. Bridgwater AV, Biomass Bioenerg., 38, 68, 2012
  6. Chen TJ, Wu C, Liu RH, Bioresour. Technol., 102(19), 9236, 2011
  7. Yan CF, Hu EY, Cai CL, Int. J. Hydrog. Energy, 35(7), 2612, 2010
  8. Xie HQ, Yu QB, Zuo ZL, Han ZC, Yao X, Qin Q, Int. J. Hydrog. Energy, 41(4), 2345, 2016
  9. Xie HQ, Yu QB, Wei MQ, Duan WJ, Yao X, Qin Q, Zuo ZL, Int. J. Hydrog. Energy, 40(3), 1420, 2015
  10. Valle B, Aramburu B, Olazar M, Bilbao J, Gayubo AG, Fuel, 216, 463, 2018
  11. Bizkarra K, Bermudez JM, Arcelus-Arrillaga P, Barrio VL, Cambra JF, Millan M, Int. J. Hydrog. Energy, 46(23), 11706, 2018
  12. Fu M, Qi W, Xu QL, Zhang SP, Yan YJ, Int. J. Hydrog. Energy, 41(3), 1494, 2016
  13. Erdogan B, Arbag H, Yasyerli N, Int. J. Hydrog. Energy, 43(3), 1396, 2018
  14. Zhang QL, Long KX, Wang J, Zhang TF, Song ZX, Lin Q, Int. J. Hydrog. Energy, 42(20), 14103, 2017
  15. Benrabaa R, Barama A, Boukhlouf H, Guerrero-Caballero J, Rubbens A, Bordes-Richard E, Lofberg A, Vannier RN, Int. J. Hydrog. Energy, 42(18), 12989, 2017
  16. Yao L, Galvez ME, Hu CW, Da Costa P, Int. J. Hydrog. Energy, 42(37), 23500, 2017
  17. Duan WJ, Yu QB, Wang ZM, Liu JX, Qin Q, Energy, 142, 486, 2018
  18. Duan WJ, Yu QB, Wang K, Qin Q, Hou LM, Yao X, Wu TW, Energy Conv. Manag., 100, 30, 2015
  19. Duan WJ, Yu QB, Xie HQ, Qin Q, Energy, 135, 317, 2017
  20. Duan WJ, Yu QB, Wu TW, Yang F, Qin Q, Int. J. Hydrog. Energy, 41(42), 18995, 2016
  21. Duan WJ, Yu QB, Wu TW, Yang F, Qin Q, Energy Conv. Manag., 117, 513, 2016
  22. Duan WJ, Yu QB, Liu JX, Wu TW, Yang F, Qin Q, Energy, 111, 859, 2016
  23. Li P, Lei W, Wu B, Yu QB, Int. J. Hydrog. Energy, 40(3), 1607, 2015
  24. Li P, Yu QB, Qin Q, Lei W, Ind. Eng. Chem. Res., 51(49), 15872, 2012
  25. Liu J, Yu Q, Zuo Z, Duan W, Han Z, Qin Q, Yang F, Appl. Therm. Eng., 103, 1112, 2016
  26. Liu J, Yu Q, Li P, Du W, Appl. Therm. Eng., 40, 351, 2012
  27. Liu J, Yu Q, Zuo Z, Yang F, Duan W, Qin Q, Constr. Build. Mater., 131, 381, 2017
  28. Dhirhi R, Prasad K, Shukla AK, Sarkar S, Renganathan T, Pushpavanam S, Kaza M, Appl. Therm. Eng., 107, 898, 2016
  29. Barati M, Esfahani S, Utigard TA, Energy, 36(9), 5440, 2011
  30. Luo SY, Zhou YM, Yi CJ, Int. J. Hydrog. Energy, 37(20), 15081, 2012
  31. Li P, Yu QB, Xie HQ, Qin Q, Wang K, Energy Fuels, 27(8), 4810, 2013
  32. Yao X, Yu Q, Wang K, Xie H, Qin Q, J. Therm. Anal. Calorim., 131, 1313, 2018
  33. Yao X, Yu Q, Xie H, Duan W, Han Z, Liu S, Qin Q, J. Renew. Sust. Energy, 9(5), 053101, 2017
  34. Yao X, Yu QB, Wang KM, Xie HQ, Qin Q, Int. J. Hydrog. Energy, 42(32), 20520, 2017
  35. Sun YQ, Zhang ZT, Liu LL, Wang XD, Bioresour. Technol., 198, 364, 2015
  36. Sun YQ, Zhang ZT, Liu LL, Wang XD, Bioresour. Technol., 181, 174, 2015
  37. Luo SY, Feng Y, Energy, 113, 845, 2016
  38. Yao X, Yu QB, Han ZR, Xie HQ, Duan WJ, Qin Q, Int. J. Hydrog. Energy, 43(19), 9246, 2018
  39. Luo SY, Feng Y, Energy Conv. Manag., 136, 27, 2017
  40. Xie H, Yu Q, Yao X, Duan W, Zuo Z, Qin Q, J. Energy Chem., 24(3), 299, 2015
  41. Yao X, Yu Q, Xie H, Duan W, Han Z, Liu S, Qin Q, J. Therm. Anal. Calorim., 131(3), 2951, 2017
  42. Duan W, Yu Q, Liu J, Hou L, Xie H, Wang K, Qin Q, Appl. Therm. Eng., 98, 936, 2016
  43. Huang BS, Chen HY, Chuang KH, Yang RX, Wey MY, Int. J. Hydrog. Energy, 37(8), 6511, 2012
  44. Yao X, Yu QB, Han ZR, Xie HQ, Duan WJ, Qin Q, Int. J. Hydrog. Energy, 43(27), 12002, 2018
  45. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M, Bioresour. Technol., 144, 288, 2013
  46. Purwanto H, Akiyama T, Int. J. Hydrog. Energy, 31(4), 491, 2006