Issue
Korean Journal of Chemical Engineering,
Vol.36, No.4, 625-634, 2019
Improved photoluminescence and monodisperse performance of colloidal CdTe quantum dots with Cannula method
Colloidal quantum dots are nano semiconductor materials that have been found in many applications, producing multiple exciton generation, unique optical and electronic properties, adjustable in size and bandwidth. Synthesized QDs are expected to exhibit high photoluminescence quantum yield and monodisperse properties according to their application area. Cannula method was adapted together with the organometallic synthesis method for the first time in the literature to increase the photoluminescence quantum yield of organometallic CdTe QD and minimize the full width at half maximum value of the photoluminescence band. Injection of precursors by the Cannula method is much faster than the injecting with the conventional method of using a glass syringe, which limits the size distribution in the solution during synthesis. In addition, the fastest injection method using Cannula method yields the shortest full width half maximum value of 27.20 nm for CdTe QDs in the literature. The photoluminescence quantum yield value of the CdTe QDs synthesized by the classical method was 8.12±2.1%, while the photoluminescence quantum yield of the CdTe QDs synthesized by the Cannula method was increased to 25.66±2.1%.
[References]
  1. Fang Z, Liu L, Xu L, Yin X, Zhong X, Nanotechnology, 19, 2008
  2. Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B, Chem. Mater., 23, 4857, 2011
  3. Shavel A, Gaponik N, Eychmuller A, J. Phys. Chem. B, 110(39), 19280, 2006
  4. Wuister SF, Swart I, van Driel F, Hickey SG, de Mello Donega C, Nano Lett., 3, 503, 2003
  5. Yang Y, Zhang C, Qu X, Zhang W, Marus M, Xu B, Wang K, Sun XW, IEEE Trans. Nanotechnol., 18, 220, 2019
  6. Ma Q, Su X, Appl. Spectrosc. Rev., 51, 162, 2016
  7. Sharma D, Jha R, Kumar S, Sol. Energy Mater. Sol. Cells, 155, 294, 2016
  8. Kim Y, Chang JY, Sens. Actuators B-Chem., 234, 122, 2016
  9. Mashinchian O, Johari-Ahar M, Ghaemi B, Rashidi M, Barar J, Omidi Y, BioImpacts, 4, 149, 2014
  10. Peng ZA, Peng XG, J. Am. Chem. Soc., 123(1), 183, 2001
  11. Wang J, Long Y, Zhang Y, Zhong X, Zhu L, ChemPhysChem., 10, 680, 2009
  12. Wang Y, Liu S, J. Chil. Chem. Soc., 57, 1109, 2012
  13. Shi JJ, Wang S, He TT, Abdel-Halim ES, Zhu JJ, Ultrason. Sonochem., 21, 493, 2014
  14. Li L, Qian H, Ren J, Chem. Commun., 528 (2005).
  15. Li YS, Jiang FL, Xiao Q, Li R, Li K, Zhang MF, Zhang AQ, Sun SF, Liu Y, Appl. Catal. B: Environ., 101(1-2), 118, 2010
  16. Kniprath R, Rabe JP, McLeskey JT, Wang DY, Kirstein S, Thin Solid Films, 518(1), 295, 2009
  17. Lan GY, Yang Z, Lin YW, Lin ZH, Liao HY, Chang HT, J. Mater. Chem., 19, 2349, 2009
  18. Birkmire RW, McCandless BE, Curr. opin. Solid State Mat. Sci., 14, 139, 2010
  19. Ferekides CS, Balasubramanian U, Mamazza R, Viswanathan V, Zhao H, Morel DL, Sol. Energy, 77(6), 823, 2004
  20. Xue FL, Chen JY, Guo J, Wang CC, Yang WL, Wang PN, Lu DR, J. Fluoresc, 17, 149, 2007
  21. Liu YF, Yu JS, J. Colloid Interface Sci., 351(1), 1, 2010
  22. Kumar BJ, Mahesh HM, Superlattices Microstruct., 104, 118, 2017
  23. Lee JB, Chen HX, Koh KN, Chang CL, Kim CM, Kim SH, Korean J. Chem. Eng., 26(2), 417, 2009
  24. Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J, Compos. Commun., 10, 68, 2018
  25. Huangfu Y, Liang C, Han Y, Qiu H, Song P, Wang L, Kong J, Gu J, Compos. Sci. Technol., 169, 70, 2019
  26. Yang X, Ren F, Wang Y, Ding T, Sun H, Ma D, Sun XW, Sci. Rep., 7 (2017).
  27. Somers RC, Bawendi MG, Nocera DG, Chem. Soc. Rev., 36, 579, 2007
  28. Hwang I, Seol M, Kim H, Yong K, Appl. Phys. Lett., 103, 2013
  29. Page RC, Espinobarro-Velazquez D, Leontiadou MA, Smith C, et al., Small, 11, 1548, 2015
  30. Murray CB, Kagan CR, Bawendi MG, Annu. Rev. Mater. Sci., 30, 545, 2000
  31. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H, J. Phys. Chem. B, 105(12), 2260, 2001
  32. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H, J. Phys. Chem. B, 106(29), 7177, 2002
  33. Li L, Qian H, Fang N, Ren J, J. Lumines., 116, 59, 2006
  34. Ge C, Xu M, Liu J, Lei J, Ju H, Chem. Commun., 450 (2008).
  35. Tian JN, Liu RJ, Zhao YC, Xu Q, Zhao SL, J. Colloid Interface Sci., 336(2), 504, 2009
  36. Elibol E, Cadırcı M, Tutkun N, Synthesising Highly Luminescent CdTe Quantum Dots Using Cannula Hot Injection Method, in: Int. Conf. Quantum Dots (ICQD 2017), France/Paris (2017).
  37. Frenette LC, Krauss TD, Nat. Commun, 8, 2017
  38. Planells M, Reynolds LX, Bansode U, Chhatre S, Ogale S, Robertson N, Haque SA, Phys. Chem. Chem. Phys., 15, 7679, 2013
  39. Pitois O, Moucheront P, Chateau X, J. Colloid Interface Sci., 231(1), 26, 2000
  40. Allen MW, Measurement of Fluorescence Quantum Yields, Thermo Sci., 1 (2010).
  41. Ding XF, Wen LJ, Zhou X, Ding YY, Ye XC, Zhou L, Liu MC, Cai H, Cao J, Chinese Phys. C, 39, 2015
  42. Forster H, Mol. Sieves, 4, 337, 2004
  43. Klimov VI, Science, 290, 314, 2000
  44. Guclu AD, Potasz P, Hawrylak P, Phys. Rev. B, 82, 2010
  45. Yu WW, Wang YA, Peng X, Chem. Mater., 15, 4300, 2003
  46. Lu ZS, Guo CX, Yang HB, Qiao Y, Guo J, Li CM, J. Colloid Interface Sci., 353(2), 588, 2011
  47. Zhu J, Wang SN, Li JJ, Zhao JW, J. Lumines., 199, 216, 2018
  48. Shockley W, Queisser HJ, J. Appl. Phys., 32, 510, 1961
  49. Kalnaityte A, Bagdonas S, Rotomskis R, J. Lumines., 201, 434, 2018
  50. Yu ZH, Li JB, O'Connor DB, Wang LW, Barbara PF, J. Phys. Chem. B, 107(24), 5670, 2003
  51. Steckel JS, Colby R, Liu W, Hutchinson K, Breen C, Ritter J, Coe-Sullivan S, Dig. Tech. Pap. - SID Int. Symp., 44, 943, 2013
  52. Li F, You L, Li H, Gu X, Wei J, Jin X, Nie C, Zhang Q, Li Q, J. Lumines., 192, 867, 2017
  53. Zhang Y, J. Lumines., 192, 1015, 2017
  54. Amelia M, Lincheneau C, Silvi S, Credi A, Chem. Soc. Rev., 41, 5728, 2012
  55. He R, You X, Tian H, Gao F, Cui D, Front. Chem. China., 3, 325, 2008
  56. Arivarasan A, Bharathi S, Vijayaraj V, Sasikala G, Jayavel R, J. Inorg. Organomet. Polym., 28, 1263, 2018
  57. Ayyaswamy A, Ganapathy S, Alsalme A, Alghamdi A, Ramasamy J, Superlattices Microstruct., 88, 634, 2015
  58. Ribeiro DSM, de Souza GCS, Melo A, Soares JX, Rodrigues SSM, Araujo AN, Montenegro MCBSM, Santos JLM, J. Mater. Sci., 52(6), 3208, 2017
  59. Bao H, Wang E, Dong S, Small, 2, 476, 2006
  60. Lesnyak V, Voitekhovich SV, Gaponik PN, Gaponik N, Eychmuller A, ACS Nano., 4, 4090, 2010
  61. Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich YP, JF, J. Phys. Chem. C., 111, 14628, 2007
  62. Kiprotich S, Onani MO, Dejene FB, Phys. B Condens. Matter., 535, 202, 2018
  63. Bailey RE, Nie SM, J. Am. Chem. Soc., 125(23), 7100, 2003