Issue
Korean Journal of Chemical Engineering,
Vol.36, No.4, 620-624, 2019
Electrochemical characteristics of lithium-excess cathode material (Li1+xNi0.9Co0.05Ti0.05O2) for lithium-ion batteries
A Ni0.9Co0.05Ti0.05(OH)2 precursor was synthesized with the concentration gradient method. To overcome the Li-ion shortage the problem due to the formation of a solid electrolyte interphase (SEI) layer during the initial charge/discharge process in the cathode material, lithium-excess Li1+xNi0.9Co0.05Ti0.05O2 (0≤x≤0.07) cathode materials were investigated by physical and electrochemical analyses. The physical properties of the lithium-excess cathode materials were analyzed using FE-SEM and XRD. A coin type half-cell was fabricated with the electrolyte of 1M LiPF6 dissolved in organic solvents (EC :EMC=1 : 2 vol%). The electrochemical performances were analyzed by the initial charge/discharge efficiency, cycle stability, rate performance and electrochemical impedance spectroscopy (EIS). The initial charge capacity of the cathode material was excellent at about 199.8-201.7mAh/g when the Li/Metal ratio was 1.03-1.07. Additionally, the efficiency of the 6.0 C/0.1 C was 79.2-79.9%. When the Li/Metal ratio was 1.05, the capacity retention showed the highest stability of 97.8% after 50 cycles.
[References]
  1. Fergus JW, J. Power Sources, 195(4), 939, 2010
  2. Kraytsberg A, Ein-Eli Y, Adv. Eng. Mater., 2, 922, 2012
  3. Cao Q, Zhang HP, Wang GJ, Xia Q, Wu YP, Wu HQ, Electrochem. Commun., 9, 1228, 2007
  4. Ebner W, Fouchard D, Xie L, Solid State Ion., 69(3-4), 238, 1994
  5. Rossen E, Jones CDW, Dahn JR, Solid State Ion., 57, 311, 1992
  6. Zhong Q, Sacken U, J. Power Sources, 54, 221, 1995
  7. Kim J, Amine K, Electrochem. Commun., 3, 52, 2001
  8. Liu HS, Li J, Zhang ZR, Gong ZL, Yang Y, Electrochim. Acta, 49(7), 1151, 2004
  9. Subramanian V, Fey GTK, Solid State Ion., 148(3-4), 351, 2002
  10. Oh P, Myeong S, Cho W, Lee MJ, Ko M, Jeong HY, Cho J, Nano Lett., 14, 5965, 2014
  11. Nomura F, Liu YB, Tanabe T, Tamura N, Tsuda T, Hagiwara T, Gunji T, Ohsaka T, Matsumoto F, Electrochim. Acta, 269, 321, 2018
  12. Zhang HZ, Qiao QQ, Li GR, Ye SH, Gao XP, J. Mater. Chem., 22, 13104, 2012
  13. Ko HS, Kim JH, Wang J, Lee JD, J. Power Sources, 372, 107, 2017
  14. Xie H, Hu G, Du K, Peng Z, Cao Y, J. Alloy. Compd., 666, 84, 2016
  15. Li W, Reimers JN, Dahn JR, Phys. Rev. B, 46, 3236, 1992
  16. Ohzuku T, Ueda A, Nagayama M, J. Electrochem. Soc., 140, 1862, 1993
  17. Dahn JR, Sacken UV, Michal CA, Solid State Ion., 44, 87, 1990
  18. Choi YM, Pyun SI, Moon SI, Solid State Ion., 89(1-2), 43, 1996
  19. Wu KC, Wang F, Gao LL, Li MR, Xiao LL, Zhao LT, Hu SJ, Wang XJ, Xu ZL, Wu QG, Electrochim. Acta, 75, 393, 2012
  20. Wei X, Zhang S, Yang P, Li H, Wang S, Ren Y, Xing Y, Meng J, Int. J. Electrochem. Sci., 12, 5636, 2017
  21. Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW, ACS Appl. Mater. Interfaces, 7, 13944, 2015
  22. Ko HS, Park HW, Lee JD, Korean Chem. Eng. Res., 56(5), 718, 2018
  23. Yoon CS, Choi MH, Lim BB, Lee EJ, Sun YK, J. Electrochem. Soc., 162(14), A2483, 2015
  24. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L, J. Electrochem. Soc., 146(4), 1279, 1999
  25. Zhao TL, Chen S, Li L, Zhang XF, Chen RJ, Belharouak I, Wu F, Amine K, J. Power Sources, 228, 206, 2013