Issue
Korean Journal of Chemical Engineering,
Vol.36, No.4, 605-612, 2019
Fabrication of magnetically recyclable ZrO2-TiO2/CoFe2O4 hollow core/shell photocatalysts: Improving photocatalytic efficiency under sunlight irradiation
iO2 is an important material for photocatalytic oxidation to degrade organic pollutants, but its utilization under visible light is low, recovery is difficult, and stability is poor. We prepared ZrO2-TiO2/CoFe2O4 (Zr-Ti/Co) photocatalyst with hollow core-shell structure by sol-gel method and layer-by-layer self-assembly method with tetrabutyl titanate and Zirconium n-butoxide as main raw materials. The samples were characterized and analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), solid ultraviolet visible diffuse reflection (UV-Vis DRS), fluorescence (FL), ultraviolet visible absorption (UV), vibrating sample magnetometer (VSM). It is concluded that the TiO2 maintains a good anatase phase structure in the Zr-Ti-Co photocatalyst. Under UV light and sunlight, the degradation rate of the photocatalyst reached 96.1% and 99.7% for 60 min, respectively, for Rhodamine B (10mg/L) reaction system. And after repeated use for five times, it still showed better regeneration and reuse.
[References]
  1. Xing MY, Xu WJ, Dong CC, Bai YC, Zeng JB, Zhou Y, Zhang JL, Yin YD, Chem-US., 4, 1359, 2018
  2. Dong CC, Ji JH, Shen B, Xing MY, Zhang JL, Environ. Sci. Technol., 52, 11297, 2018
  3. Li HZ, Shen LY, Zhang KF, Sun BJ, Ren LP, Qiao PZ, Pan K, Wang L, Zhou W, Appl. Catal. B: Environ., 220, 111, 2018
  4. Bian ZF, Zhu J, Li HX, J. Photochem. Photobio. C., 28, 72, 2016
  5. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R, Appl. Catal. A: Gen., 359(1-2), 25, 2009
  6. Shayegan Z, Lee CS, Haghighat F, Chem. Eng. J., 334, 2408, 2018
  7. Khalid NR, Majid A, Tahir MB, Niaz NA, Khalid S, Ceram. Int., 43, 14552, 2017
  8. Sayama K, Arakawa H, J. Cheminformatics, 93, 1647, 1997
  9. Wang J, Peng L, Cao F, Su BQ, Shi H, Synth. React. Inorg. M., 47, 396, 2016
  10. Haw C, Rahman SA, Chiu W, Khiew P, Radiman S, Shukor RA, Hamid MAA, Ghazali N, New J. Chem., 40, 1124, 2016
  11. Samsonov GV, Podgrushko NF, Lesnaya MI, Dvorina LA, Selivanova NF, Sov. Phys. J., 18, 1276, 1975
  12. Wolfenden A, Barrios KA, Xing LQ, J. Mater. Sci. Lett., 17(13), 1095, 1998
  13. Das D, Mishra HK, Parida KM, Dalai AK, J. Mol. Catal. A-Chem., 189(2), 271, 2002
  14. Tsai MC, Cheng PH, Lee MH, Lin HC, Chen MJ, J. Phys. D-Appl. Phys., 49, 265108, 2016
  15. Mohamed IMA, Dao VD, Barakat NAM, Yasin AS, Yousef A, Choi HS, J. Colloid Interface Sci., 476, 9, 2016
  16. Tomar LJ, Bhatt PJ, Desai RK, Chakrabarty BS, JNAM, 2, 27, 2014
  17. Zhang JQ, Li L, Xiao ZX, Liu D, Wang S, Zhang JJ, Hao YT, Zhang WZ, Acs Sustain. Chem. Eng., 4, 2037, 2016
  18. Yao BH, Han XP, Lu Y, Peng C, Zhang CJ, Mater. Sci. Forum, 852, 257, 2016
  19. Zhang J, Li L, Zhang J, Zhang X, Zhang W, New J. Chem., 41, 9113, 2017
  20. Lucky RA, Sui R, Lo JMH, Charpentier PA, Cryst. Growth Des., 10, 1598, 2010
  21. Rodriguez-Rodriguez AA, Martinez-Montemayor S, Leyva-Porras CC, Longoria-Rodriguez FE,Martinez-Guerra E, Sanchez-Dominguez M, J. Nanomater., 2367856 (2017).
  22. Haw CY, Chiu WS, Abdul Rahman S, Khiew P, Radiman S, Abd-Shukor R, Hamid MA, Ghazali N, New J. Chem., 40, 1124, 2015
  23. Gao X, Liu X, Zhu Z, Wang XJ, Xie Z, Sci. Rep-UK, 6, 30543, 2016
  24. Rana S, Rawat J, Misra RDK, Acta Biomater., 1, 691, 2005
  25. Laohhasurayotin K, Pookboonmee S, Viboonratanasri D, Kangwansupamonkon W, Mater. Res. Bull., 47(6), 1500, 2012
  26. Yang ZW, Shi YY, Wang B, Appl. Surf. Sci., 399, 192, 2017
  27. Panwar K, Jassal M, Agrawal A, Rsc Adv., 6, 92754, 2016
  28. Cizmar T, Stangar UL, Arcon I, Catal. Today, 287, 155, 2017
  29. Limaye MV, Singh SB, Das R, Poddar P, Abyaneh MK, Kulkarni SK, J. Magn. Magn. Mater., 441, 683, 2017
  30. Wang D, Yang J, Li X, Wang J, Zhai H, Lang J, Song H, Phys. Status Solidi A-Appl. Res., 214, 160066, 2017
  31. Ojemaye MO, Okoh AI, Okoh OO, J. Nanomater, 1, 526491, 2017
  32. Beydoun D, Amal R, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 94, 71, 2002
  33. Li Z, Yao Y, Zheng Y, Gao T, Liu Z, Zhou G, J. Electrochem. Soc., 165, 58, 2018
  34. Alijani M, Kaleji BK, Rezaee S, J. Mater. Sci.-Mater. El., 28, 15345, 2017
  35. Greene D, Serrano-Garcia R, Govan J, Gun’ko Y, Nanomaterials-Basel, 4, 331, 2014
  36. Zhuang H, Zhang Y, Chu Z, Long J, An X, Zhang H, Wang X, Phys. Chem. Chem. Phys., 18, 9636, 2016
  37. Chen CC, Jaihindh D, Hu SH, Fu YP, J. Photochem. Photobiol. A-Chem., 334, 74, 2017
  38. Golsefidi MA, Sarkhosh B, J. Iran. Chem. Soc., 14, 1089, 2017
  39. Xing M, Zhang J, Qiu B, Tian B, Anpo M, Che M, Small, 11, 1920, 2015
  40. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW, J. Mater. Sci.-Mater. El., 29, 5480, 2018
  41. Xing MY, Zhou Y, Dong CY, Cai LJ, Zeng LX, Shen B, Pan LH, Dong CC, Chai Y, Zhang JL, Yin YD, Nano Lett., 18, 3384, 2018
  42. Noorimotlagh Z, Kazeminezhad I, Jaafarzadeh N, Ahmadi M, Ramezani Z, Martinez SS, J. Hazard. Mater., 350, 108, 2018
  43. Zhang JJ, Qi P, Li J, Zheng X, Liu P, Guan XX, Zhen GP, J. Ind. Eng. Chem., 61, 407, 2018
  44. Ayanda OS, Nelana SM, Petrik LF, Naidoo EB, J. Water Health, 15, 1015, 2017