Issue
Korean Journal of Chemical Engineering,
Vol.36, No.4, 563-572, 2019
Palladium-copper membrane modules for hydrogen separation at elevated temperature and pressure
Two Pd-Cu alloy membrane modules were designed to recover high-purity hydrogen from a mixture at elevated temperature and pressure. Permeation and separation behavior were studied experimentally and theoretically using pure hydrogen gas and a binary mixture of H2/CO2 (58.2 : 41.8 in vol%) at 250-350 °C and 800-1,200 kPa. The Pd-Cu membrane modules presented a maximum permeation flux at the highest temperature (350 °C ) and pressure (1,200 kPa) both for pure H2 gas and the binary mixture. When the permeate and retentate flowed in the same direction in the membrane module (co-current flow), a temperature gradient and permeation flux variations were observed and the permeance of the H2/CO2 mixture was 2.263 X 10-4 mL/(cm2ㆍsㆍPa0.5) at 250 °C and 3.409 X 10-4 mL/(cm2ㆍsㆍPa0.5) at 350 °C. On the other hand, when the retentate flowed in the opposite direction to the permeate flow (counter-current flow), the temperature gradient and permeation flux variations were significantly reduced and the permeation flux improved by about 11% from that of the co-current flow module. The well-distributed temperature profile inside the module and increased hydrogen pressure difference through the membrane layer shortened the time to reach the steady state in the counter-current Pd-Cu membrane module, thus enhancing the membrane performance. The results of this study can contribute towards developing an efficient Pd-Cu membrane reactor.
[References]
  1. Adhikari S, Fernando S, Ind. Eng. Chem. Res., 45(3), 875, 2006
  2. Hu W, Wu X, Li Z, Yang J, Phys. Chem. Chem. Phys., 15, 5753, 2013
  3. Dolan MD, J. Membr. Sci., 362(1-2), 12, 2010
  4. Han YJ, Kang JH, Kim HE, Moon JH, Cho CH, Lee CH, Ind. Eng. Chem. Res., 56(9), 2582, 2017
  5. Han YJ, Ko KJ, Choi HK, Moon JH, Lee CH, Sep. Purif. Technol., 182, 151, 2017
  6. Gade SK, Thoen PM, Way JD, J. Membr. Sci., 316(1-2), 112, 2008
  7. Rahimpour M, Samimi F, Babapoor A, Tohidian T, Mohebi S, Palladium membranes applications in reaction systems for hydrogen separation and purification, Process Intensification (2017).
  8. Gao HY, Lin YS, Li YD, Zhang BQ, Ind. Eng. Chem. Res., 43(22), 6920, 2004
  9. Al-Mufachi N, Rees N, Steinberger-Wilkens R, Renew. Sust. Energ. Rev., 47, 540, 2015
  10. Way JD, Palladium/copper alloy composite membranes for high temperature hydrogen separation from coal-derived gas streams, Colorado School of Mines (US) (2003).
  11. Conde JJ, Marono M, Sanchez-Hervas JM, Sep. Purif. Rev., 46, 152, 2017
  12. Gryaznov V, Platinum Met. Rev., 30, 68, 1986
  13. Peters TA, Kaleta T, Stange M, Bredesen R, J. Membr. Sci., 383(1-2), 124, 2011
  14. Gallucci F, Fernandez E, Corengia P, Annaland MV, Chem. Eng. Sci., 92, 40, 2013
  15. Baronskaya NA, Minyukova TP, Sipatrov AG, Demeshkina MP, Khassin AA, Dimov SV, Kozlov SP, Kuznetsov VV, Terentiev VY, Khristolyubov AP, Brizitskiy OF, Yurieva TM, Chem. Eng. J., 134(1-3), 195, 2007
  16. Blaisdell CT, Kammermeyer K, Chem. Eng. Sci., 28, 1249, 1973
  17. Basile A, Paturzo L, Gallucci F, Catal. Today, 82(1-4), 275, 2003
  18. Gallucci F, De Falco M, Tosti S, Marrelli L, Basile A, Int. J. Hydrog. Energy, 33(21), 6165, 2008
  19. Basile A, Tosti S, Capannelli G, Vitulli G, Iulianelli A, Gallucci F, Drioli E, Catal. Today, 118(1-2), 237, 2006
  20. Piemonte V, De Falco M, Favetta B, Basile A, Int. J. Hydrog. Energy, 35(22), 12609, 2010
  21. Kim CH, Han JY, Lim H, Kim DW, Ryi SK, Korean J. Chem. Eng., 34(4), 1260, 2017
  22. Moon JH, Lee CH, AIChE J., 53(12), 3125, 2007
  23. Moon JH, Bae JH, Han YJ, Lee CH, J. Membr. Sci., 356(1-2), 58, 2010
  24. He X, Nieto DR, Lindbrathen A, Hagg MB, Membrane System Design for CO2 Capture, Design, Control and Integration, 10249 (2017).
  25. Ahmada F, Lau KK, Lock SSM, Rafiq S, Khan AU, Lee M, J. Ind. Eng. Chem., 21, 1246, 2015
  26. Huang Y, Merkel TC, Baker RW, J. Membr. Sci., 463, 33, 2014
  27. Caravella A, Scura F, Barbieri G, Drioli E, J. Phys. Chem. B, 114(18), 6033, 2010
  28. Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A, Chem. Eng. Sci., 66(11), 2356, 2011
  29. Gielens FC, Tong HD, Vorstman MAG, Keurentjes JTF, J. Membr. Sci., 289(1-2), 15, 2007
  30. Ward TL, Dao T, J. Membr. Sci., 153(2), 211, 1999
  31. Moon JH, Bae JH, Bae YS, Chung JT, Lee CH, J. Membr. Sci., 318(1-2), 45, 2008
  32. Yuan LX, Goldbach A, Xu HY, J. Phys. Chem. B, 111(37), 10952, 2007
  33. Howard BH, Killmeyer RP, Rothenberger KS, Cugini AV, Morreale BD, Enick RM, Bustamante F, J. Membr. Sci., 241(2), 207, 2004
  34. Goldbach A, Yuan LX, Xu HY, Sep. Purif. Technol., 73(1), 65, 2010
  35. Bustamante F, Enick RM, Cugini AV, Killmeyer RP, Howard BH, Rothenberger KS, Ciocco MV, Morreale BD, AIChE J., 50(5), 1028, 2004
  36. Helling RK, Tester JW, Energy Fuels, 1, 417, 1987
  37. Kulprathipanja A, Alptekin GO, Falconer JL, Way JD, Ind. Eng. Chem. Res., 43(15), 4188, 2004
  38. Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549, 2001
  39. Lee SW, Park JS, Lee CB, Lee DW, Kim H, Ra HW, Kim SH, Ryi SK, Energy, 66, 635, 2014