Issue
Korean Journal of Chemical Engineering,
Vol.36, No.4, 540-550, 2019
Degradation and statistical optimization of 3,5,6-trichloro-2-pyridinol by zero valent iron-activated persulfate
The compound 3,5,6-trichloro-2-pyridinol (TCPy), a metabolite of the broad-spectrum organophosphorus insecticide chlorpyrifos, is both more persistent and more water soluble than its parent compound. This difference, which allows TCPy to more readily leach into surface water and groundwater, has led to widespread contamination of TCPy in soils and aquatic environments. In this study, the degradation of TCPy by sulfate radicals was evaluated using zero valent iron activated persulfate in aqueous media. Response surface methodology coupled with Box-Behnken design was applied to evaluate the effects of the independent variables (concentration of zero valent iron, concentration of persulfate, and pH) on the mineralization of TCPy by zero valent iron activated persulfate system. The interactions, coefficients, and residuals of these variables were statically evaluated by analysis of variance. Based on the model, the optimum conditions for maximum TCPy mineralization were determined as 10.4mM of persulfate, 1.2 g/L of zero valent iron and an initial pH of 3.2. The reaction kinetics of the degradation process were examined as functions of persulfate concentration, zero valent iron concentration, and pH. Results show that zero valent iron activated persulfate can effectively remove TCPy in water with a high mineralization rate of up to 81.1%. The degradation pathways of TCPy were proposed based on the products identified by GC-MS. Calculated 꺎G values using density functional theory agreed with the proposed experimental pathway.
[References]
  1. Grube A, Donaldson D, Kiely T, Wu L, US EPA (2011).
  2. Uniyal S, Sharma RK, Biosens. Bioelectron., 116, 37, 2018
  3. Khalid S, Hashmi I, Khan SJ, J. Environ. Manage., 168, 1, 2016
  4. USEPA (2002). Interim reregistration eligibility decision for chlorpyrifos, Washington D. C. USGPO.
  5. Amer SM, Aly FA, Mutation Research/Genetic Toxicology, 279(3), 165, 1992
  6. Van Emon JM, Pan P, van Breukelen F, Chemosphere, 191, 537, 2018
  7. Zabar S, Mohamed S, Lebedev AT, Polyakova OV, Trebse P, Chemosphere, 144, 615, 2016
  8. Seidmohammadi A, Amiri R, Faradmal J, Lili M, Asgari G, Korean J. Chem. Eng., 35(3), 694, 2018
  9. Ike IA, Linden KG, Orbell JD, Duke M, Chem. Eng. J., 338, 651, 2018
  10. Barrera-Diaz C, Canizares P, Fernandez FJ, Natividad R, Rodrigo MA, J. Mex. Che. Soc., 58(3), 256, 2014
  11. Wang X, Min J, Li S, Zhu X, Cao X, Yuan S, Zuo X, Deng X, J. Environ. Chem. Eng., 6(3), 4078, 2018
  12. Jeon P, Park SM, Baek K, Korean J. Chem. Eng., 34(5), 1305, 2017
  13. Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist RL, Bjerg PL, Crit. Rev. Environ. Sci. Technol., 40(1), 55, 2010
  14. Zhou L, Zhang Y, Ying R, Wang G, Long T, Li J, Lin Y, Environ. Sci. Pollut. Res. Int., 24(12), 11549, 2017
  15. Kennedy EM, Mackie JC, Environ. Sci. Technol., 52(13), 7327, 2018
  16. Changyin ZHU, Fengxiao ZHU, Fuwang WANG, Juan GAO, Guangping FAN, Dongmei ZHOU, Guodong FANG, Pedosphere, 27(3), 465, 2017
  17. Li R, He L, Zhou T, Ji X, Qian M, Zhou Y, Wang Q, Anal. Bioanal. Chem., 406(12), 2899, 2014
  18. Liang C, Huang CF, Mohanty N, Kurakalva RM, Chemosphere, 73(9), 1540, 2008
  19. APHA, Standard methods for the examination of water wastewater, 20th Ed., American Public Health Association (1998).
  20. Das S, Mishra S, J. Environ. Chem. Eng., 5(1), 588, 2017
  21. Wei XY, Gao NY, Li CJ, Deng Y, Zhou SQ, Li L, Chem. Eng. J., 285, 660, 2016
  22. Ghauch A, Ayoub G, Naim S, Chem. Eng. J., 228, 1168, 2013
  23. Hussain I, Zhang YQ, Huang SB, Du XZ, Chem. Eng. J., 203, 269, 2012
  24. Matzek LW, Carter KE, Chemosphere, 151, 178, 2016
  25. Liang CJ, Su HW, Ind. Eng. Chem. Res., 48(11), 5558, 2009
  26. Wang Y, Chen SY, Yang X, Huang XF, Yang YH, He EK, Wang SQ, Qiu RL, Chem. Eng. J., 317, 613, 2017
  27. Teh CC, Ibrahim NA, Yunus WMZW, BioResources, 8(4), 5244, 2013
  28. Kusic H, Peternel I, Koprivanac N, Bozic AL, J. Environ. Eng., 137(6), 454, 2010
  29. Anipsitakis GP, Dionysiou DD, Gonzalez MA, Environ. Sci. Technol., 40(3), 1000, 2006
  30. Feng Y, Minard RD, Bollag JM, Environ. Toxicol. Chem., 17(5), 814, 1998
  31. Low GK, McEvoy SR, Matthews RW, Environ. Sci. Technol., 25(3), 460, 1991