Issue
Korean Journal of Chemical Engineering,
Vol.36, No.4, 529-539, 2019
Phenol removal from aqueous solution using amino modified silica nanoparticles
Phenols constitute a widespread class of water pollutants that are generated from many industries and are known to cause a significant threat to the aquatic environment. Phenols are, therefore, considered as dangerous pollutants by global international quality organizations. This has led to a growing demand for an efficient technology for phenol removal from wastewater. Different sizes of amino-modified silica nanoparticles (SiNPs) were synthesized with 10-40nm in diameter (AMS-10 to 40), and their properties were characterized in terms of size and surface modification using transmission electron microscope (TEM), dynamic light scattering (DLS), zeta potential, elemental analyses (C, H, N), thermal gravimetric analysis (TGA) and Fourier transform infra-red (FTIR). The adsorption process was carried out utilizing batch mode experiment; the influence of various factors including pH of the medium, the contact time, the initial concentration of the adsorbate and the dose of the adsorbent on the phenol adsorption efficiency of SiNPs of various sizes were investigated. Phenol removal efficiency was found to be size-dependent, such that the phenol adsorption capacity of the SiNPs was in the following order: AMS-10>AMS-20>AMS-30>AMS-40 nm. The adsorption capacity and binding coefficient were calculated to be 35.2mg/g and 0.192mg/L, respectively, for AMS-10. The amino-modified SiNPs were found to be promising adsorbents for the phenol ions removal from the aqueous medium.
[References]
  1. Zhang L, Liu J, Tang C, Lv J, Zhong H, Zhao YJ, Wang X, Appl. Clay Sci., 51, 68, 2011
  2. Said TO, Farag RS, Younis AM, Shreadah MA, Bullet. Environ. Contam. Toxic., 77, 451, 2006
  3. (a) Younis AM, Nafea SM, World Appl. Sci. J., 19, 1423 (2012); (b) Gulay B, Aydin A, Yakup AM, J. Hazard. Mater., 244, 528 (2013).
  4. Busca G, Berardinelli S, Resini C, Arrighi L, J. Hazard. Mater., 160(2-3), 265, 2008
  5. Federal Register, Environmental Protection Agency, Part VIII, 40 CFR Part 136, 58 (1984).
  6. Mirian ZA, Nezamzadeh-Ejhieh A, Desalination and Water Treatment, 1 (2015).
  7. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes M, Nature, 452, 301, 2008
  8. Dichiara AB, Weinstein SJ, Rogers RE, Ind. Eng. Chem. Res., 54(34), 8579, 2015
  9. Canizares P, Carmona M, Baraza O, Delgado A, Rodrigo MA, J. Hazard. Mater., 131(1-3), 243, 2006
  10. Dabrowski A, Podkoscielny P, Hubicik Z, Barczak M, Chemosphere, 58, 1049, 2005
  11. Lazarova Z, Boyadzhieva S, Chem. Eng. J., 100(1-3), 129, 2004
  12. Alhamed YA, Bulg. Chem. Comm., 40, 26, 2008
  13. Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O, Environ. Pollut., 107, 391, 2002
  14. Nomanbahay S, Palanisamy K, Electron. J. Biotechnol., 8, 43, 2005
  15. Alderman NS, N'Guessan AL, Nyman MC, J. Hazard. Mater., 146(3), 652, 2007
  16. Sano N, Yamamoto T, Yamamoto D, Kim SI, Eiad-Ua A, Shinomiya H, Nakaiwa M, Chem. Eng. Process., 46(6), 513, 2007
  17. Hydari S, Sharififard H, Nabavinia M, Parvizi MR, Chem. Eng. J., 193, 276, 2012
  18. Bhattacharyya K, Gupta S, Colloids Surf. A: Physicochem. Eng. Asp., 277, 191, 2007
  19. Halhouli KA, Darwish NA, Aldhoon NM, Sep. Sci. Technol., 30(17), 3313, 1995
  20. Mitra S, Sample Preparation Techniques in Analytical Chemistry, Wiley, Hoboken, New Jersey (2003).
  21. Singh DK, Srivastava B, J. Sci. Ind. Res., 61, 208, 2002
  22. Kulkarni S, Kaware J, Int. J. Sci. Eng. Res., 1, 88, 2013
  23. Younis AM, Nafea EMA, Mosleh YYI, Hefnawy MS, J. Medit. Ecol., 14, 55, 2016
  24. Ektefa F, Javadian S, Rahmati M, J. Taiwan Inst. Chem. Engineers, 88, 104, 2018
  25. Tancredi N, Medero N, Moller F, Piriz J, Plada C, Cordero T, J. Colloid Interface Sci., 279(2), 357, 2004
  26. Yang K, Wu W, Jing Q, Zhu L, Environ. Sci. Technol., 42, 7931, 2008
  27. Pan BJ, Pan BC, Zhang WM, Zhang QR, Zhang QX, Zheng SR, J. Hazard. Mater., 157(2-3), 293, 2008
  28. Vazquez I, Rodriguez-Iglesias J, Maranon E, Castrillon L, Alvarez M, J. Hazard. Mater., 147, 395, 2005
  29. Ahmad ZU, Lian Q, Zappi ME, Buchireddy PR, Gang DD, J. Environ. Sci., 75, 307, 2019
  30. Ku Y, Lee KC, J. Hazard. Mater. B, 80, 59, 2000
  31. Chen A, Li Y, Yu Y, Li Y, Xia K, Wang Y, Li S, Zhang L, Carbon, 103, 157, 2016
  32. Ebrahimi-Gatkash M, Younesi H, Shahbazi A, Heidari A, Appl. Water Sci., 7(4), 1887, 2017
  33. Radeke KH, Loseh D, Struve K, Weiss E, Zeolites, 13, 69, 1993
  34. Kim S, Marand E, Microporous Mesoporous Mater., 114, 129, 2008
  35. Martinez VM, Sanchez VP, Martinez JMM, Eur. Polym. J., 44, 3146, 2008
  36. Shiomi S, Kawamori M, Yagi S, Matsubara E, J. Colloid Interface Sci., 460, 47, 2015
  37. Chen CG, Justice RS, Schaefer DW, Baur JW, Polymer, 49(17), 3805, 2008
  38. Ritchie SMC, Bachas LG, Olin T, Sikdar SK, Bhattacharyya D, Langmuir, 15(19), 6346, 1999
  39. Mattigod SV, Feng XD, Fryxell GE, Liu J, Gong ML, Sep. Sci. Technol., 34(12), 2329, 1999
  40. Yantasee W, Lin YH, Fryxell GE, Busche BJ, Birnbaum JC, Sep. Sci. Technol., 38(15), 3809, 2003
  41. Iwamoto S, Tanakulrungsank W, Inoue M, Kagawa K, Praserthdam P, J. Mat. Sci. Lett., 19, 1439, 2000
  42. Saleh SM, Muller R, Mader HS, Duerkop A, Wolfbeis OS, Anal. Bioanal. Chem., 398, 1615, 2010
  43. Mader HS, Li X, Saleh SM, Link M, Kele P, Wolfbeis OS, Ann. N. Y. Acad. Sci., 1130, 213, 2008
  44. Stober W, Fink A, J. Colloid Interface Sci., 26, 62, 1968
  45. (a)Achatz DE, Heiligtag FJ, Li X, Link M, Wolfbeis OS, Sens. Act. B: Chem., 150, 211 (2010); (b)Ali R, Saleh SM, Elshaarawy RFM, RSC Adv., 6(90), 86965 (2010).
  46. Malvern Instruments Ltd., https://www.malvernpanalytical.com/en. Accessed February 2019.
  47. Jasco Inc. http://www.jascoinc.com/spectroscopy/ft-ir-4000-series.Accessed February 2019.
  48. Martin RW, Analyt. Chem., 21, 1419, 1949
  49. Qhobosheane M, Santra S, Zhang P, Tan W, Analyst, 126, 1274, 2001
  50. Bhakta S, Dixit CK, Bist I, Jalil KA, Suib SL, Rusling, JF, Mater. Res. Express, 3(7), 075025, 2016
  51. Thawornchaisit U, Pakulanon K, Bioresour. Technol., 98(1), 140, 2007
  52. Bhatnagar A, J. Hazard. Mater., 139(1), 93, 2007
  53. Zainudin NF, Abdullah AZ, Mohamed AR, J. Hazard. Mater., 174(1-3), 299, 2010
  54. Allen SJ, Gan Q, Matthews R, Johnson PA, J. Colloid Interface Sci., 286(1), 101, 2005
  55. Asmaly HA, Abussaud B, Saleh TA, Gupta VK, Atieh MA, J. Saudi Chem. Soc., 19, 511, 2015
  56. Yang GD, Tang L, Zeng GM, Cai Y, Tang J, Pang Y, Zhou YY, Liu YY, Wang JJ, Zhang S, Xiong WP, Chem. Eng. J., 259, 854, 2015
  57. Younis AM, Kolesnikov AV, Desyatov AV, Am. J. Anal. Chem., 5(17), 1273, 2014
  58. Anbia M, Khoshbooei S, J. Nanostruct. Chem., 5, 139, 2005
  59. Lin YF, Chen JL, J. Colloid Interface Sci., 420, 74, 2014
  60. Kumar S, Upadhyay SN, Upadhya YD, Chem. Tech. Biotechnol., 37, 281, 1987
  61. Kuleyin A, J. Hazard. Mater., 144(1-2), 307, 2007
  62. Pal P, Kumar R, Sep. Purif. Rev., 43, 89, 2014
  63. Zhang X, Zhao J, Cheng L, Lu C, Wang Y, He X, Zhang W, RSC Adv., 4, 55195, 2015
  64. Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM, Colloids Surf. A: Physicochem. Eng. Asp., 272, 89, 2006
  65. Hameed BH, Rahman AA, J. Hazard. Mater., 60, 576, 2008
  66. Yuh-Shan H, Scientometrics, 59(1), 171, 2004
  67. Ho YS, Water Res., 40(1), 119, 2006
  68. Tien C, Ramarao BV, Sep. Purif. Technol., 136, 303, 2014