Issue
Korean Journal of Chemical Engineering,
Vol.36, No.4, 522-528, 2019
Structural properties of disordered macroporous La2O2CO3/ZnO materials prepared by a solution combusion method
Disordered macroporous La2O2CO3/ZnO materials were prepared by a solution combustion method, and then their microstructures and La2O2CO3 phases were investigated as functions of La/Zn ratios and calcination temperatures. All of the materials prepared by the solution combustion method clearly showed disordered macroporous morphology whose framework was composed of ZnO and La2O2CO3 nanoparticles. A monoclinic La2O2CO3 structure was mainly formed in the disordered macroporous materials at La/Zn=1 and 2. In contrast, the conventional coprecipitation of La2O2CO3/ZnO materials dominantly formed a hexagonal La2O2CO3 phase with aggregating morphology of ZnO and La2O2CO3 nanoparticles. However, nanocrystalline sizes of ZnO (7-10 nm) and monoclinic La2O2CO3 (12-14 nm) in the disordered macroporous structure were much smaller than those (29-36 nm for ZnO and 44-58 nm for hexagonal La2O2CO3) by conventional co-precipitation. In addition, the high temperature calcination at 700 °C increased the ZnO nanocrystallite size (24 nm) in the disordered macroporous framework, with transforming La2O2-CO3 into La2O3. This result implies that the interaction between monoclinic La2O2CO3 and ZnO in the disordered macroporous structure inhibited ZnO nanoparticle agglomeration.
[References]
  1. Meadowcroft DB, J. Phys. D-Appl. Phys., 2, 1225, 1969
  2. Song QW, Wang XM, Bussjager R, Osman J, Appl. Opt., 35, 3155, 1996
  3. Tarjomannejad A, Farzi A, Niaei A, Salari D, Korean J. Chem. Eng., 33(9), 2628, 2016
  4. Park SH, Chun BH, Kim SH, Korean J. Chem. Eng., 28(2), 402, 2011
  5. Kaspar J, Fornasiero P, Hickey N, Catal. Today, 77(4), 419, 2003
  6. Ma JX, Fang M, Lau NT, Appl. Catal. A: Gen., 150(2), 253, 1997
  7. Herrera G, Jimenez-Mier J, Chavira E, Mater. Charact., 89, 13, 2014
  8. Ding DG, Lu WB, Xiong Y, Pan XL, Zhang JQ, Ling CC, Du YG, Xue QZ, Appl. Surf. Sci., 426, 725, 2017
  9. Jia L, Li J, Fang W, J. Alloy. Compd., 489, L13, 2017
  10. Wang F, Zhang ZN, Wei XJ, Fang QH, Jiang XM, Appl. Catal. A: Gen., 543, 196, 2017
  11. Li XY, Li D, Tian H, Zeng L, Zhao ZJ, Gong JL, Appl. Catal. B: Environ., 202, 683, 2017
  12. Park C, Nguyen-Phu H, Shin EW, Mol. Catal., 435, 99, 2017
  13. Li H, Gao D, Gao P, Wang F, Zhao N, Xiao F, Wei W, Sun Y, Catal. Sci. Technol., 3, 2801, 2013
  14. Li H, Jiao X, Li L, Zhao N, Xiao F, Wei W, Sun Y, Zhang B, Catal. Sci. Technol., 5, 989, 2015
  15. Jin L, Zhang Y, Dombrowski JP, Chen CH, Pravatas A, Xu L, Perkins C, Suib SL, Appl. Catal. B: Environ., 103, 200, 2015
  16. Bosch CE, Copley MP, Eralp T, Bilbe E, Thybaut JW, Marin GB, Collier P, Appl. Catal. A: Gen., 536, 104, 2017
  17. Niu H, Min Q, Tao Z, Song J, Mao C, Zhang S, Chen Q, J. Alloy. Compd., 509, 744, 2011
  18. Mu Q, Wang Y, J. Alloy. Compd., 509, 396, 2011
  19. Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S, Muller CR, J. Catal., 343, 208, 2016
  20. Pakhare D, Schwartz V, Abdelsayed V, Haynes D, Shekhawat D, Poston J, Spivey J, J. Catal., 316, 78, 2014
  21. Sadakane M, Asanuman T, Kubo J, Ueda W, Chem. Mater., 17, 3546, 2005
  22. Zhang G, Zhao Z, Liu J, Xu J, Jing Y, Duan A, Jiang G, J. Rare Earths, 27, 955, 2009
  23. Irusta S, Cornaglia LM, Lombardo EA, Mater. Chem. Phys., 86(2-3), 440, 2004
  24. Turcotte RP, Sawyer JO, Eyring L, Inorg. Chem., 8, 238, 1969
  25. Levan T, Che M, Tatibouet JM, Kermarec M, J. Catal., 142, 18, 1993
  26. Ni J, Chen LW, Lin JY, Schreyer MK, Wang Z, Kawi S, Int. J. Hydrog. Energy, 38(31), 13631, 2013