Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 312-320, 2019
Mesoporous carbon nanofiber engineered for improved supercapacitor performance
Carbon nanofiber is a well-known carbon nanostructure employed in flexible supercapacitor electrode. Despite recent developments, improvement in the performance of carbon nanofiber-based electrode is still the subject of intense research. We investigated the supercapacitor performance of porosity-induced carbon nanofibers (CNFs). The fabrication process involves electrospinning, calcination, and subsequent etching. The porous CNF not only delivers a higher capacitance of 248 F/g at a current density of 1 A/g, but also exhibits a higher rate performance of 73.54%, lower charge transfer resistance and only 1.1% capacitance loss after 2000 charge-discharge cycles, compared to pristine CNF. The excellent electrochemical behavior of porous CNF is correlated with the degree of graphitization, a higher volume of mesopores, and enhanced surface area. The as-fabricated symmetric device comprising porous CNF exhibits an energy density of 9.9Wh/kg, the power density of 0.69 kW/kg and capacitance retention of 89% after 5000 charge-discharge cycles. The introduction of porosity in CNFs is a promising strategy to achieve high-performance supercapacitor electrode.
[References]
  1. Lin Z, Goikolea E, Balducci A, Naoi K, Taberna PL, Salanne M, Yushin G, Simon P, Mater. Today, 21, 419, 2018
  2. Conway BE, Electrochemical supercapacitors, Kluwer Academic/Plenum Publishers (1999).
  3. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D, J. Mater. Chem. A, 5, 12653, 2017
  4. Xia L, Yu L, Hu D, Chen GZ, Mater. Chem. Front., 1, 584, 2017
  5. Inagaki M, Konno H, Tanaike O, J. Power Sources, 195(24), 7880, 2010
  6. Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 35(7), 1389, 2018
  7. Jin EM, Lim JG, Jeong SM, J. Ind. Eng. Chem., 54, 421, 2017
  8. Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M, J. Power Sources, 401, 37, 2018
  9. Ghosh S, Polaki SR, Ajikumar P, Krishna NG, Kamruddin M, Indian J. Phys., 92, 337, 2018
  10. Schutter C, Ramirez-Castro C, Oljaca M, Passerini S, Winter M, Balducci A, J. Electrochem. Soc., 162(1), A44, 2015
  11. Chodankar NR, Ji SH, Kim DH, J. Electrochem. Soc., 165(11), A2446, 2018
  12. Ghosh S, Sahoo G, Polaki SR, Krishna NG, Kamruddin M, Mathews T, J. Appl. Phys., 122, 214902, 2017
  13. Mao X, Hatton TA, Rutledge GC, Curr. Org. Chem., 17, 1390, 2013
  14. Choudhury A, Dey B, Mahapatra SS, Kim DW, Yang KS, Yang DJ, Nanotechnology, 29, 165401, 2018
  15. Islam N, Hoque MNF, Zu Y, Wang S, Fan Z, MRS Adv., 3, 855, 2018
  16. Kim C, Yang KS, Lee WJ, Electrochem. Solid State Lett., 7(11), A397, 2004
  17. Samuel E, Joshi B, Jo HS, Kim YI, An S, Swihart MT, Yun JM, Kim KH, Yoon SS, Chem. Eng. J., 328, 776, 2017
  18. Kim CH, Kim BH, J. Power Sources, 274, 512, 2015
  19. Cakici M, Reddy KR, Alonso-Marroquin F, Chem. Eng. J., 309, 151, 2017
  20. Lee WJ, Jeong SM, Lee H, Kim BJJ, An KH, Park YK, Jung SC, Korean J. Chem. Eng., 34(11), 2993, 2017
  21. Inagaki M, Yang Y, Kang FY, Adv. Mater., 24(19), 2547, 2012
  22. Kim C, Yang K, Appl. Phys. Lett., 83, 1216, 2003
  23. Zhou DD, Li WY, Dong XL, Wang YG, Wang CX, Xia YY, J. Mater. Chem. A, 1, 8488, 2013
  24. Park SJ, Im SH, Bull. Korean Chem. Soc., 29, 777, 2008
  25. Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E, ACS Appl. Mater. Interfaces, 7, 23515, 2015
  26. Wang J, Tang J, Xu Y, Ding B, Chang Z, Wang Y, Hao X, Dou H, Kim JH, Zhang X, Yamauchi Y, Nano Energy, 28, 232, 2016
  27. Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE, Carbon, 99, 607, 2016
  28. Jeong JH, Kim BH, J. Taiwan Inst. Chem. Eng., 84, 179, 2018
  29. Kim YS, Kumar K, Fisher FT, Yang EH, Nanotechnology, 23, 015301, 2012
  30. Fan L, Yang L, Ni X, Han J, Guo R, Zhang C, Carbon, 107, 629, 2016
  31. Ghosh S, Mathews T, Gupta B, Das A, Krishna NG, Kamruddin M, Nano-Struct. Nano-Objects, 10, 42, 2017
  32. Ismar E, Karazehir T, Ates M, Sarac AS, J. Appl. Polym. Sci., 135, 45723, 2018
  33. Stoller MD, Ruoff RS, Energy Environ. Sci., 3, 1294, 2010
  34. Ding R, Wu H, Thunga M, Bowler N, Kessler MR, Carbon, 100, 126, 2016
  35. Ghosh S, Ganesan K, Polaki SR, Mathews T, Dhara S, Kamruddin M, Tyagi AK, Appl. Surf. Sci., 349, 576, 2015
  36. Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M, Ostrikov K, Energy Storage Mater., 14, 297, 2018
  37. Ghosh S, Polaki SR, Kamruddin M, Jeong SM, Ostrikov KK, J. Phys. D-Appl. Phys., 51, 145303, 2018
  38. Kim BH, Yang KS, J. Ind. Eng. Chem., 20(5), 3474, 2014
  39. Chee WK, Lim HN, Zainal Z, Harrison I, Andou Y, Huang NM, Altarawneh M, Jiang ZT, Mater. Lett., 199, 200, 2017
  40. Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J, Nano Energy, 15, 66, 2015
  41. Dong Q, Wang G, Hu H, Yang J, Qian BQ, Ling Z, Qiu JS, J. Power Sources, 243, 350, 2013
  42. Hong S, Lee S, Paik U, Electrochim. Acta, 141, 39, 2014
  43. Eftekhari A, J. Mater. Chem. A, 6, 2866, 2018
  44. Cai J, Niu HT, Wang HX, Shao H, Fang J, He JR, Xiong HG, Ma CJ, Lin T, J. Power Sources, 324, 302, 2016
  45. Sankar KV, Selvan RK, RSC Adv., 4, 17555, 2014