Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 305-311, 2019
Effect of substrate off-orientation on the characteristics of GaInP/AlGaInP single heterojunction solar cells
The effects of GaAs substrate off-orientation on GaInP/AlGaInP heterojunction solar cells were investigated. The performances of solar cells fabricated on 2° and 10° off GaAs substrates were compared. The short circuit current densities were 10.44 mA/cm2 for the 10° off sample, 7.15 mA/cm2 and 7.41 mA/cm2 for the 2° off samples, which showed 30% higher short-circuit current density for 10o off samples. Also, 30% higher external quantum efficiencies and smooth surface morphology were observed in the solar cell fabricated on the 10° off GaAs substrate. Secondary ion mass spectrometry depth profiles showed that the solar cells on 2° off substrates had a 20-times higher oxygen concentration than the solar cells on 10o off GaAs substrate in the n-GaAs/GaAs buffer layer. The 30% reduction for the solar cells on 2° substrates in short circuit current density (Jsc) was attributed to the higher oxygen concentration of the 2° off samples than the 10° off samples. I-V characteristics comparison between different front contact grid patterns was also performed for optimization of grid contacts. A 0.47 V bandgap-voltage offset, one of the device performance figures of merit to compare PV cells with different materials, was obtained.
[References]
  1. Suzuki M, Nishikawa Y, Ishikawa M, Kokubun Y, J. Cryst. Growth, 113, 127, 1991
  2. Kondo M, Anayama C, Okada N, Sekiguchi H, Domen K, Tanahashi T, J. Appl. Phys., 76, 914, 1994
  3. Radulescu DC, Wicks GW, Schaff WJ, Calawa AR, Eastman LF, J. Appl. Phys., 63, 5115, 1988
  4. Suzuki T, Gomyo A, Iijima S, J. Cryst. Growth, 99, 60, 1990
  5. France RM, Geisz JF, Garcia I, Steiner MA, McMahon WE, et al., IEEE J. Photovoltaics, 5, 432, 2015
  6. Sah CT, Noyce RN, Shockley W, Proceedings of the IRE, 45, 1228, 1957
  7. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, et al., IEEE J. Photovoltaics, 4, 1433, 2014
  8. Zhang B, Lee DH, Chae H, Park C, Cho SM, Korean J. Chem. Eng., 27(3), 999, 2010
  9. Kim H, Nam S, Jeong J, Lee S, Seo J, Han H, Kim Y, Korean J. Chem. Eng., 31(7), 1095, 2014
  10. Cho HH, Cho CH, Kang H, Yu H, Oh JH, Kim BJ, Korean J. Chem. Eng., 32, 261, 2014
  11. Yoo IH, Kalanur SS, Eom K, Ahn B, Cho IS, Yu HK, Jeon HT, Seo HT, Korean J. Chem. Eng., 34(12), 3200, 2017
  12. Pham VHT, Truong NTN, Trinh TK, Lee SH, Park C, Korean J. Chem. Eng., 33(2), 678, 2016
  13. Feucht DL, J. Vac. Sci. Technol., 14, 57, 1977
  14. Geisz JF, Steiner MA, Garcia I, Kurtz SR, Friedman DJ, Appl. Phys. Lett., 103, 041118, 2013
  15. Masuda T, Tomasulo S, Lang JR, Lee ML, J. Appl. Phys., 117, 094504, 2015
  16. Moser M, Geng C, Lach E, Queisser I, Scholz F, Schweizer H, Dornen A, J. Cryst. Growth, 124, 333, 1992
  17. Chand N, Jordan AS, Chu SNG, Appl. Phys. Lett., 59, 3270, 1991
  18. Kondo M, Okada N, Domen K, Sugiura K, Anayama C, Tanahashi T, J. Electron. Mater., 23, 355, 1994
  19. Xiang N, Tukiainen A, Pessa M, J. Electron. Mater., 13, 549, 2002
  20. Yu HW, Chang EY, Nguyen HQ, Chang JT, Chung CC, Kuo CI, Wong YY, Wang WC, Appl. Phys. Lett., 97, 2008, 2010
  21. Hata M, Takata H, Yako T, Fukuhara N, Maeda T, Uemura Y, J. Cryst. Growth, 124, 427, 1992
  22. Philips BA, Norman AG, Seong TY, Mahajan S, Booker GR, Skowronski M, Harbison JP, Keramidas VG, J. Cryst. Growth, 140, 249, 1994
  23. Gomyo A, Suzuki T, Iijima S, Phys. Rev. Lett., 60, 2645, 1988
  24. Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 34(5), 1504, 2017