Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 299-304, 2019
In situ electrochemical and mechanical accelerated stress tests of a gas diffusion layer for proton exchange membrane fuel cells
This study proposes an in situ accelerated stress test of a gas diffusion layer (GDL) at a gas-solution-electrode triple phase boundary to individually examine electrochemical and mechanical GDL aging for the first time. Electrochemical GDL stability during repeated potential jumps and mechanical GDL robustness during inert gas permeation were investigated. A Pt-loaded GDL was used to mimic a GDL in contact with Pt particles at the cathode. It was also used to evaluate GDL degradation during an accelerated stress test. In this study, the GDL that experienced an electrochemical stress of potential jumps up to 1.75 V for 27.8 h exhibited 2.9-fold and 4-fold higher losses in electrochemical surface area and oxygen reduction current, respectively, than did one eroded by Ar permeation at 325 cm3 min-1 for 100 h.
[References]
  1. Lemons RA, J. Power Sources, 29, 251, 1990
  2. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, Dubois DL, et al., J. Am. Chem. Soc., 113, 6624, 2013
  3. Park S, Shao Y, Liu J, Wang Y, Energy Environ. Sci., 5, 9331, 2012
  4. Park S, Shao Y, Viswanathan VV, Liu J, Wang Y, J. Ind. Eng. Chem., 42, 81, 2016
  5. Prasanna D, Selvaraj V, Korean J. Chem. Eng., 33(4), 1489, 2016
  6. Han IS, Park SK, Chung CB, Korean J. Chem. Eng., 33, 3127, 2016
  7. Kazeminasab B, Rowshanzamir S, Ghadamian H, Korean J. Chem. Eng., 34(11), 2978, 2017
  8. Yuan XZ, Li H, Zhang SS, Martin J, Wang HJ, J. Power Sources, 196(22), 9107, 2011
  9. Wu JF, Yuan XZ, Martin JJ, Wang HJ, Zhang JJ, Shen J, Wu SH, Merida W, J. Power Sources, 184(1), 104, 2008
  10. Horn YS, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D, Top. Catal., 46, 285, 2007
  11. Yu XW, Ye SY, J. Power Sources, 172(1), 145, 2007
  12. Yu S, Li X, Liu S, Hao J, Shao Z, Yi B, RSC Adv., 4, 3852, 2014
  13. Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD, J. Electrochem. Soc., 8, A273, 2005
  14. Tang H, Qi ZG, Ramani M, Elter JF, J. Power Sources, 158(2), 1306, 2006
  15. Jia F, Liu FF, Guo LJ, Liu HT, Int. J. Hydrog. Energy, 41(15), 6469, 2016
  16. Yamashita Y, Itami S, Takano J, Kakinuma K, Uchida H, Watanabe M, Iiyama A, Uchida M, J. Electrochem. Soc., 164(4), F181, 2017
  17. Chen GB, Zhang HM, Ma HP, Zhong HX, Int. J. Hydrog. Energy, 34(19), 8185, 2009
  18. Roen LM, Paik CH, Jarvi TD, J. Electrochem. Soc., 7, A19, 2004
  19. Nitta I, Hottinen T, Himanen O, Mikkola M, J. Power Sources, 171(1), 26, 2007
  20. Chang WR, Hwang JJ, Weng FB, Chan SH, J. Power Sources, 166(1), 149, 2007
  21. Chun JH, Jo DH, Kim SG, Park SH, Lee CH, Kim SH, Renew. Energy, 48, 35, 2012
  22. Srivastava R, Mani P, Hahn N, Strasser P, Angew. Chem.-Int. Edit., 46, 8988, 2007
  23. Das E, Gursel SA, Sanh LI, Yurtcan AB, Int. J. Hydrog. Energy, 42, 19426, 2017
  24. Zhao J, Shahgaldi S, Alaefour I, Xu Q, Li XG, Appl. Energy, 209, 203, 2018
  25. Ishikawa H, Sugawara Y, Inoue G, Kawase M, J. Power Sources, 374, 196, 2018
  26. Omura J, Yano H, Watanabe M, Uchida H, Langmuir, 27(10), 6464, 2011
  27. Vielstich W, Fuel Cells: Modern Processes for the Electrochemical Production of Energy, John Wiley & Sons, New York (1970).
  28. Bard AJ, Faulkner LR, Electrochemical methods, John Wiley & Sons, New York (1980).
  29. Park S, Shao Y, Wan H, Viswanathan VV, Towne SA, Rieke PC, Liu J, Wang Y, J. Phys. Chem. C, 115, 22633, 2011
  30. Wang H, Cote R, Faubert G, Guay D, Dodelet JP, J. Phys. Chem. B, 103(12), 2042, 1999
  31. Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU, Carbon, 37, 1785, 1999
  32. Gulyas J, Foldes E, Lazar A, Pukanszky B, Compos. Pt. A-Appl. Sci. Manuf., 32, 353, 2001
  33. Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y, Nat. Commun., 6, 5848, 2015
  34. Sugawara Y, Okayasu T, Yadav AP, Nishikata A, Tsuru T, J. Electrochem. Soc., 159(11), F779, 2012
  35. Hasche F, Oezaslan M, Strasser P, Phys. Chem. Chem. Phys., 12, 15251, 2010