Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 281-286, 2019
One-pot preparation of LiFePO4/C composites
A convenient one-pot method, called high-temperature high-energy mechanical force (HTHEMF), was successfully developed for the preparation of LiFePO4/C composites. Upon the combination of high-temperature with high-energy mechanical force, the whole synthesis process of this method is very simple and only involves two steps, the precursor preparation and the calcination step. The results of XRD, SEM, BET and electrochemical performance tests indicated that after calcination at 600 °C for 9 h, the LiFePO4/C composites have the best properties. The discharge capacity of the composites was 150.3mA h g-1 at 0.1 C. After 30 cycles test, the reversible capacity was 147mA h g-1 and the retention ratio to the initial capacity was 97.8%. The results indicated that LiFePO4/C composites with good properties can be obtained by one-pot HTHEMF method.
[References]
  1. Padhi AK, Nanjundaswamy KS, Goodenough JB, J. Electrochem. Soc., 144(4), 1188, 1997
  2. Chen YK, Chinese J. Power Sources, 27, 487, 2003
  3. Whittingham MS, Chem. Rev., 114(23), 11414, 2014
  4. Zubi G, Dufo-Lopez R, Carvalho M, Pasaoglu G, Renew. Sust. Energ. Rev., 89, 292, 2018
  5. Gong Q, He YS, Yang Y, Liao XZ, Ma ZF, J. Solid State Electrochem., 16, 1383, 2012
  6. Wang G, Liu R, Chen M, Kang H, Li X, Yan K, Korean J. Chem. Eng., 29(8), 1094, 2012
  7. Wang ZH, Yuan LX, Zhang WX, Huang YH, J. Alloy. Compd., 25, 532, 2012
  8. Xu XL, Qi CY, Hao ZD, Wang H, Jiu JT, Nano-Micro Lett., 10(1), 1, 2018
  9. Pan FF, Wang WL, J. Solid State Electrochem., 16, 1423, 2012
  10. Yin YH, Gao MX, Pan HG, Shen LK, Ye X, Liu YF, Fedkiw PS, Zhang XW, J. Power Sources, 199, 256, 2012
  11. Angulakshmi N, Thomas S, Nahm KS, Stephan AM, Elizabeth RN, Ionics, 17, 407, 2011
  12. Liu XH, Zhao ZW, Powder Technol., 197(3), 309, 2010
  13. Wang Y, Sun B, Park JS, Kim HS, J. Alloy. Compd., 509, 1040, 2011
  14. Xu F, Zou JD, Zhao Q, Yan KP, Sun Y, Peng YJ, Wang GX, J. Chengdu. Uni., 37(1), 84, 2018
  15. Raj H, Sil A, Ionics, 24, 2543, 2018
  16. Liu YY, Cao CB, Li J, Electrochim. Acta, 55(12), 3921, 2010
  17. Satyavani TVSL, Kumar AS, Rao PSVS, Eng. Sci. Technol. an Int. J., 19, 178, 2016
  18. Jia LY, Shao ZB, J. Chin. J. Mater. Res., 24, 213, 2010
  19. Chen D, Yan HG, Huang PY, Chin. J. Rare Metal., 27, 293, 2003
  20. Fecht HJ, Hellstern E, Fu Z, Johnson WL, J. Metall. Trans., 21A, 2333, 1990
  21. Chen XB, Shao ZB, Tian YW, J. Mater. Technol., 26, 67, 2011
  22. Jia PQ, Shao ZB, Liu KR, Mater. Lett., 130, 71, 2014
  23. Scaccia S, Carewska M, Wisniewski P, Prosini PP, Mater. Res. Bull., 38(7), 1155, 2003
  24. Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N, Electrochim. Acta, 49(24), 4213, 2004
  25. Konarova M, Taniguchi I, Powder Technol., 191(1-2), 111, 2009
  26. Luo SH, Tang ZL, Lu JB, Zhang ZT, Ceram. Int., 34, 1349, 2008
  27. Wang YH, Mei R, Yang XM, Ceram. Int., 40, 8439, 2014
  28. Jin EM, Jin B, Jun DK, Park KH, Gu HB, Kim KW, J. Power Sources, 178(2), 801, 2008