Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 265-271, 2019
Development of sequential batch ozonated adsorptive membrane bioreactor to mitigate fouling with reduced energy consumption
The present study focuses on overcoming the drawback as fouling in a membrane bioreactor (MBR), which can be alleviated by integrating advanced oxidation process, adsorption, and biofilm carriers in the activated sludge process. The optimal sludge retention time, carbon and ozone dosage was 150 minutes, 15 g and 1.5 Lmin-1, respectively. The percentage removal was observed to be above 90% for chemical oxygen demand and total organic carbon whereas for total dissolved solids was only 40% under transmembrane pressure of 20 kPa. The increase in permeate flux was 30% as compared to MBR. Sequential batch membrane bioreactor (SBMBR) showed 12% reduction in energy consumption for three hour operation at the flow rate of 0.72 L/h (transmembrane pressure 20 kPa), and it was confirmed in the SEM of carbon, membrane, UV, CV and HPLC also. The energy consumption required also confirms the less internal fouling via the extended backwash of four hours.
[References]
  1. Tu XA, Zhang S, Xu LR, Zhang MC, Zhu JR, Desalination, 261(1-2), 191, 2010
  2. Vaiopoulou E, Misiti TM, Pavlostathis SG, Bioresour. Technol., 179, 339, 2015
  3. Magara Y, Itoh M, Morioka T, Prog. Nucl. Energy, 29, 175, 1995
  4. Disinfection O, Technology Fact Sheet (1999).
  5. Koros WJ, Ma YH, Shimidzu T, J. Membr. Sci., 120(2), 149, 1996
  6. Mortensen ER, Cath TY, Brant JA, Dennett KE, Childress AE, J. Environ. Eng., 133, 1136, 2007
  7. Zuthi MFR, Ngo HH, Guo WS, Bioresour. Technol., 122, 119, 2012
  8. Ikehata K, Naghashkar NJ, El-Din MG, Ozone: Sci. Eng., 28, 353, 2006
  9. Falletti L, Conte L, Ind. Eng. Chem. Res., 46(21), 6656, 2007
  10. Czekalski N, Imminger S, Salhi E, Veljkovic M, Kleffel K, Drissner D, Hammes F, Burgmann H, Von Gunten U, Environ. Sci. Technol., 50, 11862, 2016
  11. Wang J, Wang L, Cui E, Lu H, Korean J. Chem. Eng., 35(6), 1274, 2018
  12. Langergraber G, Fleischmann N, Hofstaedter F, Weingartner A, Water Sci. Technol., 49, 9, 2004
  13. Nordin N, Amir SFM, Othman MR, Int. J. Electrochem. Sci., 8, 11403, 2013
  14. Yang X, Zhou Z, Raju MN, Cai X, Meng F, J. Environ. Sci., 57, 150, 2017
  15. Gashtasbi F, Yengejeh RJ, Babaei AA, Korean J. Chem. Eng., 35(8), 1726, 2018
  16. Wang D, Ji M, Wang C, Brazilian J. Chem. Eng., 31, 703, 2014
  17. Szep A, Kertesz S, Laszlo Z, Szabo G, Hodur C, Acta Technica Corviniensis-Bulletin of Engineering, 5, 25 (2012).
  18. Hong S, Faibish RS, Elimelech M, J. Colloid Interface Sci., 196(2), 267, 1997
  19. Kanani DA, Sun XH, Ghosh R, J. Membr. Sci., 315(1-2), 1, 2008
  20. Velasco C, Ouammou M, Calvo JI, Hernandez A, J. Colloid Interface Sci., 266(1), 148, 2003
  21. Rezaei H, Ashtiani FZ, Fouladitajar A, Desalination, 274(1-3), 262, 2011
  22. Massey AJ, Schoepfer J, Brough PA, Brueggen J, Chene P, et al., Mol. Cancer Ther., 9, 4, 2010
  23. Novakova L, Dousa M, Anal. Chem. Acta, 15, 199, 2017
  24. Ghate V, Leong AL, Kumar A, SukBang W, Zhou W, Yuk HG, Food Microbiol., 48, 49, 2015
  25. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J, CA: Cancer Journal for Clinicians, 66, 115 (2016).
  26. Yang M, Li Y, Wei Y, Lu J, Yu D, Liu J, Fan Y, Huan jing ke xue=Huanjing kexue, Europe PMC, 36, 2203 (2015).
  27. Lee K, Lee S, Lee SH, Kim SR, Oh HS, Park PK, Choo KH, Kim YW, Lee JK, Lee CH, Environ. Sci. Technol., 50, 10914, 2016
  28. Hasyimah MAIN, Mohammad AW, Ind. Eng. Chem. Res., 53(39), 15213, 2014