Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 236-247, 2019
Facile preparation of antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic polyvinylidene fluoride membranes for effective removal of rhodamine B
A simplified strategy for facilely fabricating antifouling graphite carbon nitride/silver phosphate (g-C3N4/ Ag3PO4) nanocomposite photocatalytic polyvinylidene fluoride (PVDF) porous membranes was developed for effective removal of rhodamine B (RhB). g-C3N4/Ag3PO4 heterojunction was strongly fixed to the interior of the PVDF membranes via phase inversion method. The membrane structure was analyzed by Fourier transform spectrophotometer (FT-IR). The morphology of the prepared membranes was investigated using scanning electron microscopy (SEM), EDX-mapping and atomic force microscopy (AFM), respectively. All prepared nanocomposite photocatalytic PVDF membranes exhibited a typically porous structure, and g-C3N4/Ag3PO4 nanocomposites were well dispersed inside the membranes. The obtained g-C3N4/Ag3PO4 heterojunction nanoparticle decorated PVDF membrane had a lower water contact angle of 79° and higher porosity of 85% than that of other two control membranes. The nanocomposite photocatalytic PVDF porous membranes had extremely high permeation flux over 1,083 Lㆍm-2ㆍh-1, and could be used for the removal of RhB. The removal efficiency of g-C3N4/Ag3PO4-PVDF membranes towards RhB solution under visible light irradiation reached 97%, higher than that of the pure PVDF membranes (41%) and g-C3N4-PVDF membranes (85%). Remarkably, the flux performance and flux recovery ratio (FRR) of membranes revealed that the g-C3N4/Ag3PO4- PVDF membranes could recover high flux after fouling, which presented better fouling resistance. Furthermore, the fabricated antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic PVDF porous membranes exhibited excellent recyclability. Therefore, it is expected that g-C3N4/Ag3PO4-PVDF membranes could provide an energy-saving strategy for effective removal of organic dyes wastewater and have a great potential for practical wastewater treatment in the future.
[References]
  1. Wang GL, Chen S, Yu HT, Quan X, J. Hazard. Mater., 299, 27, 2015
  2. Wu HQ, Liu YJ, Mao L, Jiang CH, Ang JM, Lu XH, J. Membr. Sci., 532, 20, 2017
  3. Zhou KG, McManus D, Prestat E, Zhong X, Shin YY, Zhang HL, Haigh SJ, Casiraghi C, J. Mater. Chem. A, 4, 11666, 2016
  4. Xu ZW, Wu TF, Shi J, Teng KY, Wang W, Ma MJ, Li J, Qian XM, Li CY, Fan JT, J. Membr. Sci., 520, 281, 2016
  5. Wu YL, Yan M, Cui JY, Yan YS, Li CX, Adv. Funct. Mater., 25(36), 5823, 2015
  6. Hamzah N, Leo CP, Desalination, 418, 79, 2017
  7. Zhang RX, Braeken L, Luis P, Wang XL, Van der Bruggen B, J. Membr. Sci., 437, 179, 2013
  8. Wang XT, Wang GL, Chen S, Fan XF, Quan X, Yu HT, J. Membr. Sci., 541, 153, 2017
  9. Zhang Q, Quan X, Wang H, Chen S, Su Y, Li ZL, Sci. Rep., 7, 2017
  10. Zhao HX, Chen S, Quan X, Yu HT, Zhao HM, Appl. Catal. B: Environ., 194, 134, 2016
  11. Kumar M, Gholamvand Z, Morrissey A, Nolan K, Ulbricht M, Lawler J, J. Membr. Sci., 506, 38, 2016
  12. Wang C, Wu YL, Lu J, Zhao J, Cui JY, Wu XL, Yan YS, Huo PW, ACS Appl. Mater. Interfaces, 9, 23687, 2017
  13. Fischer K, Grimm M, Meyers J, Dietrich C, Glaser R, Schulze A, J. Membr. Sci., 478, 49, 2015
  14. Xu H, Ding MM, Chen W, Li Y, Wang K, Sep. Purif. Technol., 195, 70, 2018
  15. Horovitz I, Avisar D, Baker MA, Grilli R, Lozzi L, Di Camillo D, Mamane H, J. Hazard. Mater., 310, 98, 2016
  16. Li LD, Yan JQ, Wang T, Zhao ZJ, Zhang J, Gong JL, Guan NJ, Nat. Commun., 6, 2015
  17. Qu LL, Wang N, Xu H, Wang WP, Liu Y, Kuo LD, Yadav TP, Wu JJ, Joyner J, Song YH, Li HT, Lou J, Vajtai R, Ajayan PM, Adv. Funct. Mater., 27, 31, 2017
  18. Li XX, Wan T, Qiu JY, Wei H, Qin FH, Wang YH, Liao YJ, Huang ZY, Tan XC, Appl. Catal. B: Environ., 217, 591, 2017
  19. Feng YH, Liu L, Zhang J, Aslanb H, Dong MD, J. Mater. Chem. B, 5, 8631, 2017
  20. Hong YZ, Li CS, Li D, Fang ZY, Luo BF, Yan X, Shen HQ, Mao BD, Shi WD, Nanoscale, 9, 14103, 2017
  21. Hong YZ, Li CS, Fang ZY, Luo BF, Shi WD, Carbon, 121, 463, 2017
  22. He F, Chen G, Zhou YS, Yu YG, Zheng Y, Hao S, Chem. Commun., 51, 16244, 2015
  23. He F, Chen G, Yu YG, Zhou YS, Zheng Y, Hao S, Chem. Commun., 51, 6824, 2015
  24. Xue JJ, Ma SS, Zhou YM, Zhang ZW, He M, ACS Appl. Mater. Interfaces, 7, 9630, 2015
  25. Hong YZ, Jiang YH, Li CS, Fan WQ, Yan X, Yan M, Shi WD, Appl. Catal. B: Environ., 180, 663, 2016
  26. Hong YZ, Li CS, Zhang GY, Meng YD, Yin BX, Zhao Y, Shi WD, Chem. Eng. J., 299, 74, 2016
  27. Wang W, Fang JJ, Shao SF, Lai M, Lu CH, Appl. Catal. B: Environ., 217, 57, 2017
  28. Zhang N, Gao J, Huang CH, Liu W, Tong P, Zhang L, Anal. Chim. Acta, 934, 122, 2016
  29. Xu Y, Fu ZC, Cao S, Chen Y, Fu WF, Catal. Sci. Technol., 7, 587, 2017
  30. Ma JF, Huang DQ, Zhang WY, Zou J, Kong Y, Zhu JX, Sridhar K, Chemosphere, 162, 269, 2016
  31. Miao XL, Shen XP, Wu JJ, Ji ZY, Wang JH, Kong LR, Liu MM, Song CS, Appl. Catal. A: Gen., 539, 104, 2017
  32. Liu L, Qi YH, Lu JR, Lin SL, An WJ, Liang YH, Cui WQ, Appl. Catal. B: Environ., 183, 133, 2016
  33. Zhou L, Zhang W, Chen L, Deng HP, Wan JL, Catal. Commun., 100, 191, 2017
  34. Ma JF, Huang DQ, Zhang WY, Zou J, Kong Y, Zhu JX, Sridhar K, Chemosphere, 162, 269, 2016
  35. Sun M, Zeng Q, Zhao X, Shao Y, Ji PG, Wang CQ, Yan T, Du B, J. Hazard. Mater., 339, 9, 2017
  36. Safarpour M, Khataee A, Vatanpour V, Sep. Purif. Technol., 140, 32, 2015
  37. He ZH, Meng MJ, Yan L, Zhu WH, Sun FQ, Yan YS, Liu Y, Liu SJ, Sep. Purif. Technol., 145, 63, 2015
  38. Abdel-Karim A, Leaper S, Alberto M, Vijayaraghavan A, Fan XL, Holmes SM, Souaya ER, Badawy MI, Gorgojo P, Chem. Eng. J., 334, 789, 2018
  39. Xiang YH, Liu F, Xue LX, J. Membr. Sci., 476, 321, 2015
  40. Xia SJ, Ni MZ, J. Membr. Sci., 473, 54, 2015
  41. Li F, Yu ZX, Shi H, Yang QB, Chen Q, Pan Y, Zeng GY, Yan L, Chem. Eng. J., 322, 33, 2017