Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 226-235, 2019
Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater
Aminated cassava residue magnetic microspheres (ACRPM) were synthesized via an inverse emulsion method by using chemically modified cassava residue as a crude material, and acrylic acid (AA), acrylamide (AM), and methyl methacrylate (MMA) as monomers and a polyethylene glycol/methanol system (PEG/MeOH) as the porogen. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and vibrating sample magnetometry (VSM) were used to characterize the ACRPM. The results indicated that amino groups were grafted to the cassava residue magnetic microspheres, and the Fe3O4 nanoparticles were encapsulated in the microspheres. After porogen was added, the particle size of the ACRPM decreased from 16.5 꺷m to 150 nm with a pore volume of 0.05510m3/g, and the specific surface area of the ACRPM increased from 3.02 to 12.34m2/g. The ACRPM were superparamagnetic, and the saturation magnetization was 9.8 emu/g. The maximum adsorption capacity of Pb(II) on the ACRPM was 390mg/g. The ACRPM exhibited a large specific surface area and provided many adsorption sites for metal ion adsorption, which favored a high adsorption capacity. Additionally, the Pb(II) adsorption process was fitted to pseudo-second-order kinetic and Langmuir isothermal adsorption models. This suggests that the Pb(II) adsorption process was dominated by a chemical reaction process and that chemisorption was the rate-controlling step during the Pb(II) removal process. In addition, the adsorbent exhibited good stability after six consecutive reuses.
[References]
  1. Da'na E, Microporous Mesoporous Mater., 247, 145, 2017
  2. Tepanosyan G, Sahakyan L, Belyaeva O, Maghakyan N, Saghatelyan A, Chemosphere, 184, 1230, 2017
  3. Ma JH, Liu YT, Ali O, Wei YF, Zhang SQ, Zhang YM, Cai T, Liu CB, Luo SL, J. Hazard. Mater., 344, 1034, 2018
  4. Kurniawan TA, Chan GY, Lo WH, Babel S, Sci. Total Environ., 366, 409, 2006
  5. Ma Y, Lv L, Guo Y, Fu Y, Shao Q, Wu T, Guo S, Sun K, Guo X, Wujcik EK, Guo Z, Poly, 128, 12, 2017
  6. Huang JN, Cao YH, Shao J, Peng XF, Guo ZH, Ind. Eng. Chem. Res., 56(38), 10689, 2017
  7. Garg UK, Kaur MP, Garg VK, Sud D, J. Hazard. Mater., 140(1-2), 60, 2007
  8. Shariful MI, Sepehr T, Mehrali M, Ang BC, Amalina MA, J. Appl. Polym. Sci., 135, 45851, 2018
  9. Xu Z, Gao G, Pan B, Zhang W, Lv L, Water Res., 87, 378, 2015
  10. Petrinic I, Korenak J, Povodnik D, Helix-Nielsen C, J. Clean Prod., 101, 292, 2015
  11. Altmann J, Ruhl AS, Zietzschmann F, Jekel M, Water Res., 55, 185, 2014
  12. Shaker MA, albishri HM, Chemosphere, 111, 587, 2014
  13. Li N, Fu F, Lu J, Ding Z, Tang B, Pang J, Environ. Pollut., 220, 1376, 2017
  14. Lv L, Chen N, Feng C, Zhang J, Li M, RSC Adv., 7, 27992, 2017
  15. Dang HC, Yuan X, Xiao Q, Xiao WX, Luo YK, Wang XL, Song F, Wang YZ, J. Environ. Chem. Eng., 5, 4505, 2017
  16. Noor NM, Othman R, Mubarak NM, Abdullah EC, J. Taiwan Inst. Chem. Eng., 78, 168, 2017
  17. Park W, Gordon AC, Cho S, Huang X, Harris KR, Larson AC, Kim DH, ACS Appl. Mater. Inter., 9, 13819, 2017
  18. Rodkate N, Rutnakornpituk M, Carbohydr. Polym., 151, 251, 2016
  19. Zhang XY, Zhang N, Du CB, Guan P, Gao XM, Wang CY, Du YF, Ding SC, Hu XL, Chem. Eng. J., 317, 988, 2017
  20. Hu Z, Shao Q, Moloney MG, Xu XR, Zhang DY, Li J, Zhang CH, Huang YD, Macromolecules, 50(4), 1422, 2017
  21. Zhu WJ, Ma W, Li CX, Pan JM, Dai XH, Chem. Eng. J., 276, 249, 2015
  22. Liu J, Wu HT, Lu JF, Wen XY, Kan J, Jin CH, Chem. Eng. J., 262, 803, 2015
  23. Xie J, Zhong G, Cai C, Chen C, Chen X, Talanta, 169, 98, 2017
  24. Huang J, Su P, Zhou L, Yang Y, Colloids Surf. A: Physicochem. Eng. Asp., 490, 241, 2016
  25. Pingmuanglek P, Jakrawatana N, Gheewala SH, J. Clean Prod., 162, 1075, 2017
  26. Jiang HY, Qin Y, Gadow SI, Li YY, Int. J. Hydrog. Energy, 42(5), 2868, 2017
  27. Lu HS, Lv CL, Zhang MH, Liu SY, Liu JT, Lian F, Energy Conv. Manag., 132, 251, 2017
  28. Cheng J, Zhang JB, Lin RC, Liu JZ, Zhang L, Cen KF, Bioresour. Technol., 228, 348, 2017
  29. Xie X, Xiong H, Zhang Y, Tong Z, Liao A, Qin Z, J. Environ. Chem. Eng., 5, 2800, 2017
  30. Garcia AR, Lacko C, Snyder C, Bohorquez AC, Schmidt CE, Rinaldi C, Colloids Surf. A: Physicochem. Eng. Asp., 529, 119, 2017
  31. Guo Z, Fan J, Zhang J, Kang Y, Liu H, Jiang L, Zhang C, J. Taiwan Inst. Chem. Eng., 58, 290, 2016
  32. Hajlane A, Kaddami H, Joffe R, Ind. Crop. Prod., 100, 41, 2017
  33. Martin DM, Faccini M, Garcia MA, Amantia D, J. Environ. Chem. Eng., 6, 236, 2018
  34. Lin QT, Pan JX, Lin QL, Liu QJ, J. Hazard. Mater., 263, 517, 2013
  35. Lu L, Li J, Ng DHL, Yang P, Song P, Zuo M, J. Ind. Eng. Chem., 46, 315, 2017
  36. Wang W, Liang T, Bai H, Dong W, Liu X, Carbohydr. Polym., 179, 297, 2018
  37. Zhai T, Zheng Q, Cai Z, Xia H, Gong S, Carbohydr. Polym., 148, 300, 2016
  38. Wang L, Giammar DE, J. Colloid Interface Sci., 448, 331, 2015
  39. Liu XY, Liu MY, Zhang L, J. Colloid Interface Sci., 511, 135, 2018
  40. Kolodynska D, Krukowska-Bak J, Kazmierczak-Razna J, Pietrzak R, Microporous Mesoporous Mater., 244, 127, 2017
  41. Fakhre NA, Ibrahim BM, J. Hazard. Mater., 343, 324, 2018
  42. Ma X, Liu X, Anderson DP, Chang PR, Food Chem., 181, 133, 2015
  43. Liu Q, Li F, Lu H, Li M, Liu J, Zhang S, Sun Q, Xiong L, Food Chem., 242, 256, 2018
  44. Yin N, Wang K, Xia YA, Li ZQ, Desalination, 430, 120, 2018
  45. Liu T, Han X, Wang YG, Yan L, Du B, Wei Q, Wei D, J. Colloid Interface Sci., 508, 405, 2017
  46. Yuan Q, Chi Y, Yu NS, Zhao Y, Yan WF, Li XT, Dong B, Mater. Res. Bull., 49, 279, 2014
  47. Fan HL, Zhou SF, Jiao WZ, Qi GS, Liu YZ, Carbohydr. Polym., 174, 1192, 2017
  48. Hu Q, Xiao Z, Xiong X, Zhou G, Guan X, J. Environ. Sci., 27, 207, 2015
  49. Putro JN, Santoso SP, Ismadji S, Ju YH, Microporous Mesoporous Mater., 246, 166, 2017
  50. Yakout AA, El-Sokkary RH, Shreadah MA, Abdel Hamid OG, Carbohydr. Polym., 172, 20, 2017
  51. Cheng TW, Lee ML, Ko MS, Ueng TH, Yang SF, Appl. Clay Sci., 56, 90, 2012