Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 217-225, 2019
Degradation and removal of p-nitroaniline from aqueous solutions using a novel semi-fluid Fe/charcoal micro-electrolysis reactor
p-Nitroaniline (PNA) is a common contaminant in the wastewater of oil refineries, the petrochemical industry and from production of pesticides, dyes and glue. The aim of this research was to determine the extent of degradation and removal of PNA from aqueous solutions by a novel semi-fluid Fe/charcoal reactor, process optimization, determination of the intermediate and final products and the degradation reaction path. The effective factors in the degradation process were contact time, aeration amount, initial PNA concentration, Fe/charcoal ratio, and initial pH of the solution. The intermediate products were determined by GC-MS. The kinetics of the degradation reaction also was determined. PNA removal efficiency in an actual sample from petrochemical industry wastewater was tested under optimal conditions. The maximum removal efficiency under the optimal conditions (pH: 7; contact time 120min; aeration rate 10 L/min; Fe/charcoal ratio: 2/1; initial concentration of PNA: 10 mg/L) for the synthetic solution and in actual wastewater samples were 95% and 89%, respectively. In addition, the system stability was investigated in ten consecutive cycles of the electrode reuse. The removal efficiency decreased as low as 5%, which indicates the high stability of the system. The degradation process was determined to follow pseudo-first kinetics and the Langmuir-Hinshelwood model. Fe/charcoal micro-electrolysis is a relatively highly efficient system for removing PNA from wastewater and is suggested for this purpose.
[References]
  1. Nwokem C, Gimba C, Ndukwe G, Abechi S, J. Adv. Sci. Res., 5, 2, 2014
  2. Lai C, Li B, Chen M, Zeng G, Huang D, Qin L, Liu X, Cheng M, Wan J, Du C, Huang F, Liu S, Yi H, Int. J. Hydrog. Energy, 43, 3, 2018
  3. Sun JH, Sun SP, Fan MH, Guo HQ, Lee YF, Sun RX, J. Hazard. Mater., 153, 1, 2008
  4. Malakootian M, Ehrampoush MH, Mahdizadeh H, Golpaygani A, J. Water Chem. Technol., 40, 6, 2018
  5. Silambarasan S, Vangnai AS, J. Hazard. Mater., 302 (2016).
  6. Chen WS, Huang CP, Chemosphere., 125 (2015).
  7. Oturan MA, Environ. Sci. Pollut. Res., 21, 14, 2014
  8. Lai C, Wang MM, Zeng GM, Liu YG, Huang DL, Zhang C, Wang RZ, Xu P, Cheng M, Huang C, Wu HP, Qin L, Appl. Surf. Sci., 390, 30, 2016
  9. Li B, Lai C, Zeng G, Qin L, Yi H, Huang D, Zhou C, Liu X, Cheng M, Xu P, Zhang C, Huang F, Liu S, ACS Appl. Mater. Interfaces, 10, 22, 2018
  10. Kim J, Yeom C, Kim Y, Korean J. Chem. Eng., 33, 6, 2016
  11. Lin H, Lin Y, Liu L, J. Taiwan Inst. Chem. Eng., 58 (2015).
  12. Malakootian M, Mahdizadeh H, Nasiri A, Mirzaienia F, Hajhoseini M, Amirmahani N, Desalination, 438 (2018).
  13. Hosseini G, Maleki A, Daraei H, Faez E, Shahamat YD, Arab. J. Sci. Eng., 40, 11, 2015
  14. Yang Z, Ma Y, Liu Y, Li Q, Zhou Z, Ren Z, Chem. Eng. J., 315 (2017).
  15. Yanhe H, Han L, Meili L, Yimin S, Cunzhen L, Jiaqing C, Sep. Purif. Technol., 170 (2016).
  16. Liu LH, Lin Y, He Q, Adv. Mater. Res., 955-959 (2014).
  17. Yahiaoui O, Aizel L, Lounici H, Drouiche N, Goosen M, Pauss A, Mameri N, Desalination, 270 (2011).
  18. Baek K, Lee HH, Shin HJ, Yang JW, Korean J. Chem. Eng., 17, 2, 2000
  19. Zhou H, Lv P, Shen Y, Wang J, Fan J, Water Res., 47, 10, 2013
  20. Lai B, Zhou Y, Yang P, Yang J, Wang J, Chemosphere, 90, 4, 2013
  21. Deng S, Li D, Yang X, Xing W, Li J, Zhang Q, Chemosphere., 168 (2017).
  22. Shi J, Zhang B, Liang S, Li J, Wang Z, Environ. Sci. Pollut. Res., 25, 9, 2018
  23. Oturan MA, Peiroten J, Chartrin P, Acher AJ, Environ. Sci. Technol., 34, 16, 2000
  24. Huang W, Liu R, Adv. Mater. Res., 233-235 (2011).
  25. APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, Ed. 20. USA (1998).
  26. Sun JH, Sun SP, Fan MH, Guo HQ, Qiao LP, Sun RX, J. Hazard. Mater., 148, 1, 2007
  27. Khataee A, Zarei M, Desalination, 278, 1, 2011
  28. Malakootian M, Pourshaban-Mazandarani M, Hossaini H, Ehrampoush MH, Process Saf. Environ. Protect., 104, Part A, 2016
  29. Wu L, Liao L, Lv G, Qin F, He Y, Wang X, J. Hazard. Mater., 254-255, 15, 2013
  30. Zelekew OA, Kuo DH, Appl. Surf. Sci., 393, 30, 2017
  31. Gautam S, Kamble SP, Sawant SB, Pangarkar VG, Chem. Eng. J., 110, 1, 2005
  32. Mecozzi M, Sturchio E, Boccia P, Zanellato M, Meconi C, Peleggi F, Environ. Sci. Pollut. Res., 24, 6, 2017
  33. Zhou X, Lai C, Huang D, Zeng G, Chen L, Qin L, Xu P, Cheng M, Huang C, Zhang C, Zhou C, J. Hazard. Mater., 346 (2018).
  34. Zhao YS, Sun C, Sun JQ, Zhou R, Sep. Purif. Technol., 142 (2015).
  35. Li K, Zheng Z, Feng J, Zhang J, Luo X, Zhao G, Huang X, J. Hazard. Mater., 166, 2, 2009
  36. Zheng K, Pan B, Zhang Q, Zhang W, Pan B, Han Y, Zhang Q, Wei D, Xu Z, Zhang Q, Sep. Purif. Technol., 57, 2, 2007
  37. Kamarehie B, Mohamadian J, Mousavi SA, Asgari G, Shahamat YD, Desalination Water Treat., 80 (2017).
  38. Benito A, Penades A, Lliberia JL, Gonzalez-Olmos R, Chemosphere., 166 (2017).