Issue
Korean Journal of Chemical Engineering,
Vol.36, No.2, 203-209, 2019
Integrated production of polymer-grade lactide from aqueous lactic acid by combination of heterogeneous catalysis and solvent crystallization with ethanol
Lactide, a six-membered dimeric cyclic ester of lactic acid, is a key building block of polylatic acid, a representative bio-based biodegradable polymer. As an alternative to the conventional lactide production process of a twostep polymerization and depolymerization from lactic acid, we developed a novel continuous and one-step synthesis of optically pure lactide from lactic acid under atmospheric conditions with SnO2-SiO2 nanocomposites as heterogeneous catalyst. In this catalytic process, lactide was obtained in vapor phase together with water vapor and the unreacted lactic acid. After optimization of crystallization process using ethanol solvent, lactide crystals with 99 wt% purity and a lactide yield of 78 wt% were obtained. Based on these results, an integrated process for high-yield polymer-grade lactide production from aqueous lactic acid could be constructed by combination of the heterogeneous catalysis and crystallization with ethanol, which is more environmentally friendly as compared to the conventional two-step prepolymer process.
[References]
  1. Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M, Science, 337(6095), 695, 2012
  2. Saygin D, Gielen DJ, Draeck M, Worrell E, Patel MK, Renew. Sust. Energ. Rev., 40, 1153, 2014
  3. Corma A, Iborra S, Velty A, Chem. Rev., 107(6), 2411, 2007
  4. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A, Biomacromol., 12, 523, 2011
  5. Jacobsen S, Degee PH, Fritz HG, Dubois PH, Jerome R, Polym. Eng. Sci., 39(7), 1311, 1999
  6. Saito N, Okada T, Horiuchi H, Murakami N, Takahashi J, Nawata M, Ota H, Nozaki K, Takaoka K, Nature Biotechnol., 19, 332, 2001
  7. Gruber PR, Hall ES, Kolstad JJ, Iwen ML, Benson RD, Borchardt RL, US Patent 5,247,059 (1993).
  8. Meerdink J, Sadergard NDA, US Patent 8,053,584 B2 (2011).
  9. Yoo DK, Kim D, Macromol. Res., 13, 510, 2006
  10. Upare PP, Hwang YK, Chang JS, Hwang DW, Ind. Eng. Chem. Res., 51(13), 4837, 2012
  11. Upare PP, Lee M, Hwang DW, Hwang YK, Chang JS, Catal. Commun., 56, 179, 2014
  12. Dusselier M, Van Wouwe P, Dewaele A, Jacobs PA, Sels BF, Science, 349(6243), 78, 2015
  13. Van Wouwe P, Dusselier M, Vanleeuw E, Sels B, ChemSusChem, 9, 907, 2016
  14. Upare PP, Yoon JW, Hwang DW, Lee UH, Hwang YK, Hong DY, Kim JC, Lee JH, Kwak SK, Shin H, Kim H, Chang JS, Green Chem., 18, 5978, 2016
  15. Yamaguchi Y, Arimura T, US Patent 5,502,215 (1996).
  16. Tsukegi T, Motoyama T, Shirai Y, Nishida H, Endo T, Polymer Degrad. Stabil., 92, 552, 2007
  17. Koay GFL, Chuah TG, Zainal-Abidin S, Ahmad S, Choong TSY, Ind. Crop. Prod., 34, 1135, 2011
  18. Chen TC, Ju YH, Ind. Eng. Chem. Res., 40(17), 3781, 2001
  19. Xu WL, Huang YB, Qian JH, Sha O, Wang YQ, Sep. Purif. Technol., 41(2), 173, 2005
  20. Ohara H, Okuyama H, Ogaito M, Fujii Y, Kawamoto T, Kawabe T, Horibe Y, US Patent 6,313,319 B1 (2001).
  21. Xiaoning L, Rongqing W, Ying L, Jun W, C.N. Patent 101,157,680 (2006).
  22. Chen Z, Xie C, Xu Z, Wang YL, Zhao HP, Hao HX, J. Chem. Eng. Data, 58(1), 143, 2013
  23. Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Stefaniak M, Green Chem., 10, 31, 2008
  24. Erbetta CDC, Alves RJ, Resende JM, Freitas RFS, Sousa RS, J. Biomaterials Nanobiotechnol., 3, 208, 2012