Issue
Korean Journal of Chemical Engineering,
Vol.36, No.1, 157-165, 2019
Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles
Well-graphitized carbon nanotubes (CNTs) were grown by using monodisperse spherical mesoporous silica encapsulating single iron oxide (Fe3O4) nanoparticles (MSEINPs) as catalytic templates by chemical vapor deposition (CVD) and using acetylene as carbon source. The catalytic templates were synthesized by a sol-gel method. The MSEINPs exhibited better activity and selectivity in CNT synthesis than bare Fe3O4 catalysts. The synthesized multiwall carbon nanotubes (MWCNTs) were analyzed by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The carbon deposits are rich in MWCNTs, as confirmed by FESEM and TGA. The wall thickness of the MWCNTs is controlled primarily by the size of the spherical mesoporous silica layer encapsulating the Fe3O4 NPs, while the inner diameter of the CNTs is determined by the size of the Fe3O4 NPs at the center of the MSEINPs. The average diameter of the MWCNTs increased significantly with increases in the growth temperature and acetylene flow rate. The analytical results show that the CNTs prepared on MSEINPs are well graphitized with a narrow size distribution in thickness, and straight and longer tubes are obtained without major defects as compared to the CNTs grown on bare Fe3O4 NPs.
[References]
  1. Iijima S, Nature, 354, 56, 1991
  2. Iijima S, Ichihashi T, Nature, 363, 603, 1993
  3. Koval'chuk AA, Shchegolikhin AN, Shevchenko VG, Nedorezova PM, Klyamkina AN, Aladyshev AM, Macromolecules, 41(9), 3149, 2008
  4. Rahman MM, Suleiman R, Kim HD, Korean J. Chem. Eng., 34(9), 2480, 2017
  5. Lee WJ, Jeong SM, Lee H, Kim BJJ, An KH, Park YK, Jung SC, Korean J. Chem. Eng., 34(11), 2993, 2017
  6. Liu C, Cheng HM, Mater. Today, 16, 19, 2013
  7. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ, Science, 339(6119), 535, 2013
  8. Azizi N, Arzani M, Mahdavi HR, Mohammadi T, Korean J. Chem. Eng., 34(9), 2459, 2017
  9. Yang L, An Y, Dai B, Guo X, Liu Z, Peng B, Korean J. Chem. Eng., 33, 2271, 2016
  10. Shadike Z, Cao MH, Ding F, Sang L, Fu ZW, Chem. Commun., 51, 10486, 2015
  11. Atchudan R, Pandurangan A, Microporous Mesoporous Mater., 167, 162, 2013
  12. Rather SU, Korean J. Chem. Eng., 33, 1511, 2016
  13. Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R, Nature, 363, 605, 1993
  14. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE, Chem. Phys. Lett., 243, 49, 1995
  15. Ivanov V, Nagy JB, Lambin P, Lucas A, Zhang XB, Zhang XF, Bernaerts D, Van Tendeloo G, Amelinckx S, Van Landuyt J, Chem. Phys. Lett., 223, 329, 1994
  16. Balamurugan J, Pandurangan A, Kim NH, Lee JH, Nanoscale, 7, 679, 2015
  17. Atchudan R, Joo J, Pandurangan A, Mater. Res. Bull., 48(6), 2205, 2013
  18. Zheng F, Liang L, Gao Y, Sukamto JH, Aardahl CL, Nano Lett., 2, 729, 2002
  19. Atchudan R, Pandurangan A, Joo J, Microporous Mesoporous Mater., 175, 161, 2013
  20. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T, Nature Mater., 3, 891, 2004
  21. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T, Angew. Chem.-Int. Edit., 47, 8438, 2008
  22. Mohapatra J, Mitra A, Bahadur D, Aslam M, CrystEngComm, 15, 524, 2013
  23. Huang X, Schmucker A, Dyke J, Hall SM, Retrum J, Stein B, Remmes N, Baxter DV, Dragnea B, Bronstein LM, J. Mater. Chem., 19, 4231, 2009
  24. Ramesh P, Okazaki T, Taniguchi R, Kimura J, Sugai T, Sato K, Ozeki Y, Shinohara H, J. Phys. Chem. B, 109(3), 1141, 2005
  25. Xiao Y, Wang T, Cao Y, Wang X, Zhang Y, Liu Y, Huo Q, Dalton Trans., 44, 4355, 2015
  26. Atchudan R, Pandurangan A, Somanathan T, J. Mol. Catal. A-Chem., 309(1-2), 146, 2009
  27. Pauly TR, Pinnavaia TJ, Chem. Mater., 13, 987, 2001
  28. Chen CY, Li HX, Davis ME, Micropor. Mater., 2, 17, 1993
  29. Occelli ML, Biz S, Auroux A, Ray GJ, Microporous Mesoporous Mater., 26, 193, 1998
  30. Halonen N, Kordas K, Toth G, Mustonen T, Maklin J, Vahakangas J, Ajayan PM, Vajtai R, J. Phys. Chem. C, 112, 6723, 2008
  31. Ferrari AC, Robertson J, Phys. Rev. B, 61, 14095, 2000
  32. Iatridi Z, Tsitsilianis C, Soft Matter, 9, 185, 2013
  33. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A, Nat. Mater., 1(3), 190, 2002
  34. Zhang R, Wang X, Chem. Mater., 19, 976, 2007
  35. Atchudan R, Perumal S, Karthikeyan D, Pandurangan A, Lee YR, Microporous Mesoporous Mater., 215, 123, 2015
  36. Li W, Zhang LS, Wang Q, Yu Y, Chen Z, Cao CY, Song WG, J. Mater. Chem., 22, 15342, 2012
  37. Atchudan R, Pandurangan A, J. Mol. Catal. A-Chem., 355, 75, 2012
  38. Vetrivel S, Do JS, Cheng MY, Hwang BJ, J. Phys. Chem. C, 111, 16211, 2007
  39. Escobar M, Moreno MS, Candal RJ, Marchi MC, Caso A, Polosecki PI, Rubiolo GH, Goyanes S, Appl. Surf. Sci., 254(1), 251, 2007
  40. Chajara K, Andersson CH, Lu J, Widenkvist E, Grennberg H, New J. Chem., 34, 2275, 2010
  41. Scaccia S, Carewska M, Prosini PP, Thermochim. Acta, 435(2), 209, 2005
  42. Atchudan R, Perumal S, Edison TNJI, Lee YR, RSC Adv., 5, 93364, 2015
  43. Sui J, Zhang C, Hong D, Li J, Cheng Q, Lib Z, Cai W, J. Mater. Chem., 22, 13674, 2012
  44. Juan JC, Jiang YJ, Meng XJ, Cao WL, Yarmo MA, Zhang JC, Mater. Res. Bull., 42(7), 1278, 2007
  45. Yuan D, Yuan X, Zou W, Zeng F, Huang X, Zhou S, J. Mater. Chem., 22, 17820, 2012