Issue
Korean Journal of Chemical Engineering,
Vol.36, No.1, 146-156, 2019
Study of effective parameters for the polarization characterization of PEMFCs sensitivity analysis and numerical simulation
A three-dimensional model of a HT-PEMFC was simulated using Comsol Multiphysics software. Sensitivity was analyzed by using the three-level Box-Behnken experimental design. The effect of independent variables on the fuel cell performance including air and hydrogen velocity, temperature and amount of phosphoric acid doping level (PAdop) on the membrane was investigated. The results showed that the PAdop is the most important variable. The simulation results showed that with the increasing of the PAdop from 2 to 16, the current density (at a voltage of 0.4 V) increased from 0.3 to 0.9A/cm2, which confirms the importance of the PAdop factor on the fuel cell performance.
[References]
  1. Devrim Y, Erkan S, Bac N, Eroglu I, Int. J. Hydrog. Energy, 34(8), 3467, 2009
  2. Li Q, He R, Jensen JO, Bjerrum NJ, Chem. Mater., 15, 4896, 2003
  3. Cheddie D, Munroe N, J. Power Sources, 156(2), 414, 2006
  4. Qi ZG, He CZ, Kaufman A, J. Power Sources, 111(2), 239, 2002
  5. Kongstein OE, Berning T, Borresen B, Seland F, Tunold R, Energy, 32(4), 418, 2007
  6. Weng D, Wainright JS, Landau U, Savinell RF, J. Electrochem. Soc., 143(4), 1260, 1996
  7. Ergun D, Devrim Y, Bac N, Eroglu I, J. Appl. Polym. Sci., 124 (2012).
  8. Gant SE, Kelsey A, McNally K, Witlox HWM, Bilio M, J. Loss Prev. Process Ind., 26(4), 792, 2013
  9. Haghayegh M, Eikani MH, Rowshanzamir S, Int. J. Hydrog. Energy, 42(34), 21944, 2017
  10. Sohn YJ, Yim SD, Park GG, Kim M, Cha SW, Kim K, Int. J. Hydrog. Energy, 42(18), 13226, 2017
  11. Lakshmi RB, Harikrishnan NP, Juliet AV, Appl. Surf. Sci., 418, 99, 2017
  12. Li S, Sunden B, Int. J. Hydrog. Energy, 42(44), 27323, 2017
  13. Bradfield R, Cairns G, Wright G, Technological Forecasting and Social Change, 100, 44 (2015).
  14. Wang SJ, Lee SY, Computational Statistics & Data Analysis, 23, 239 (1996).
  15. Hadzima-Nyarko M, Nyarko EK, Moric D, Expert Systems with Applications, 38, 13405 (2011).
  16. Zio E, Pedroni N, Carlo M, Reliability Engineering & System Safety, 107, 90 (2012).
  17. Mousavi J, Parvini M, Int. J. Hydrog. Energy, 41(9), 5188, 2016
  18. Chippar P, Ju H, Solid State Ion., 225, 30, 2012
  19. Lobato J, Canizares P, Rodrigo MA, Pinar FJ, Mena E, Ubeda D, Int. J. Hydrog. Energy, 35(11), 5510, 2010
  20. O'hayre R, Cha SW, Prinz FB, Colella W, Fuel cell fundamentals, Wiley (2016).
  21. Springer TE, Gottesfeld S, Pseudo homogeneous catalyst layer model for polymer electrolyte fuel cell, Los Alamos National Lab., NM (United States) (1991).
  22. Song DT, Wang QP, Liu ZS, Navessin T, Holdcroft S, Electrochim. Acta, 50(2-3), 731, 2004
  23. Bernardi DM, Verbrugge MW, J. Electrochem. Soc., 139, 2477, 1992
  24. Cheddie DF, Munroe NDH, Int. J. Hydrog. Energy, 32(7), 832, 2007
  25. Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM, J. Qual. Technol., 36, 53, 2004
  26. Khajeh M, J. Supercrit. Fluids, 55(3), 944, 2011
  27. Kanaris A, Mouza A, Paras S, Int. J. Therm. Sci., 48, 1184, 2009
  28. Carton JG, Olabi AG, Energy, 35(7), 2796, 2010
  29. Kim HM, Kim KY, Int. J. Heat Mass Transf., 47(23), 5159, 2004
  30. Sezgin B, Caglayan DG, Devrim Y, Steenberg T, Eroglu I, Int. J. Hydrog. Energy, 41(23), 10001, 2016
  31. Altan M, Mater. Des., 31, 599, 2010
  32. Yetilmezsoy K, Demirel S, Vanderbei RJ, J. Hazard. Mater., 171(1-3), 551, 2009
  33. Liu HL, Lan YW, Cheng YC, Process Biochem., 39(12), 1953, 2004
  34. Adinarayana K, Ellaiah P, J. Pharm. Pharm. Sci., 5, 272, 2002
  35. Wu DF, Zhou JC, Li YD, Chem. Eng. Sci., 64(2), 198, 2009