Issue
Korean Journal of Chemical Engineering,
Vol.36, No.1, 48-55, 2019
Biosorption of Cu(II) from aqueous solution onto immobilized Ficus religiosa branch powder in a fixed bed column: Breakthrough curves and mathematical modeling
We investigated the adsorption potential of powdered branches from Ficus religiosa, an abundantly available plant, for the removal of Cu(II) from aqueous solution via column studies. Biomass was used as silica immobilized form and characterized using available techniques, including Fourier transformed infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Breakthrough curve approach was used to explain removal capacity of biomass in a continuous flow mode, using different operating parameters like bed height (5-30 cm), inlet metal concentration (100-300mg/L) and pH (3-5) of the solution, at a fixed flow rate of 2mL/min. Biosorption of Cu(II) favored with increased service time (breakthrough and exhaust time) of the column with an increase in pH of inlet solution. Maximum biosorption capacity (17.5mg/g) for Cu(II) was achieved at 5 cm bed height, pH 5 and 300 mg/L influent Cu(II) concentration. Findings suggested that Ficus religiosa branch powder takes less service time and thus triggers fast removal of metal ions. Bed depth service time (BDST), Thomas and Yoon-Nelson models were effectively applied to the breakthrough data. The study indicated that the immobilized powdered branches could be used for the effective removal of Cu(II) ions in a continuous flow mode.
[References]
  1. Hasfalina CM, Maryam RZ, Luqman CA, Rashid M, APCBEE Procedia, 3, 255, 2012
  2. Tor A, Danaoglu N, Arslan G, Cengeloglu Y, J. Hazard. Mater., 164(1), 271, 2009
  3. Christoforidis AK, Orfanidis S, Papageorgiou SK, Lazaridou AN, Favvas EP, Mitropoulos AC, Chem. Eng. J., 277, 334, 2015
  4. Munagapati VS, Yarramuthi V, Nadavala SK, Alla SR, Abburi K, Chem. Eng. J., 157(2-3), 357, 2010
  5. Nuhoglu Y, Oguz E, Process Biochem., 38(11), 1627, 2003
  6. Hassan E, Chem. Int., 2, 89, 2016
  7. Ogundipe KD, Babarinde A, Chem. Int., 3, 135, 2017
  8. Martin-Lara MA, Blazquez G, Calero M, Almendros AI, Ronda A, Int. J. Miner. Process., 148, 72, 2016
  9. Yan GY, Viraraghavan T, Bioresour. Technol., 78(3), 243, 2001
  10. Goyal P, Srivastava MM, Srivastava S, J. Nucl. Agri. Biol., 36, 16, 2007
  11. Atkinson B, Bux F, Kasan H, Water S. A., 24, 129, 1998
  12. Singh D, Singh B, Goel RK, J. Ethnopharmacol., 134, 565, 2011
  13. Aslam ZM, Ramzan N, Naveed S, Feroze N, J. Chil. Chem. Soc., 55, 81, 2010
  14. Goyal P, Srivastava S, Arch. Environ. Prot., 34, 35, 2008
  15. Krishna B, Venkateswarlu P, Indian J. Chem. Technol., 18(5), 381, 2011
  16. Qaiser S, Saleemi AR, Umar M, J. Hazard. Mater., 166(2-3), 998, 2009
  17. Rao KS, Anand S, Venkateswarlu P, CLEAN, 39, 384, 2011
  18. Qureshi AUR, Farooq U, Athar M, Salman M, Rehmat N, Des. Water Treat., 82, 201, 2017
  19. Farooq U, Athar M, Khan MA, Kozinski JA, Environ. Monit. Assess., 185, 845, 2013
  20. Abia AA, Asuquo ED, Tsing. Sci. Technol., 12, 485, 2007
  21. Lopez-Ramon M, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F, Carbon, 37, 1215, 1999
  22. Akar ST, Gorgulu A, Akar T, Celik S, Chem. Eng. J., 168(1), 125, 2011
  23. Bohart GS, Adams EQ, J. Am. Ceram. Soc., 42, 523, 1920
  24. Thomas HC, J. Am. Chem. Soc., 66, 1664, 1944
  25. Yoon YH, Nelson JH, Am. Ind. Hyg. Assoc. J., 45, 509, 1984
  26. Heraldy E, Lestari WW, Permatasari D, Arimurti DD, J. Environ. Chem. Eng., 6, 1201, 2018
  27. Bodirlau R, Teaca CA, Roman. J. Phys., 54, 93, 2009
  28. Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 44, 234, 2014
  29. Chuah TG, Jumasiah A, Azni I, Katayon S, Choong SYT, Desalination, 175(3), 305, 2005
  30. Farooq U, Kozinski JA, Khan MA, Athar M, Bioresour. Technol., 101(14), 5043, 2010
  31. Hydari S, Sharififard H, Nabavinia M, Parvizi MR, Chem. Eng. J., 193, 276, 2012
  32. Bharathi KS, Ramesh SPT, Appl. Water Sci., 3, 673, 2013
  33. Muhamad H, Doan H, Lohi A, Chem. Eng. J., 158(3), 369, 2010
  34. Amin M, Alazba A, Shafiq M, GLOBAL NEST JOURNAL, 19, 464, 2017
  35. Kapur M, Mondal MK, Des. Water Treat., 57, 12192, 2016
  36. Mishra V, Balomajumdar C, Agarwal VK, J. Waste Manage, 2013, 1, 2013
  37. Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza GR, J. Biosci. Bioeng., 103(6), 509, 2007
  38. Lopez-Cervantes J, Sanchez-Machado DI, Sanchez-Suarte RG, Correa-Murrieta MA, Adsorpt. Sci. Technol., 36, 215, 2018
  39. Aziz ASA, Manaf LA, Man HC, Kumar NS, Environ. Sci. Pollut. Res., 21, 7996, 2014
  40. Acheampong MA, Pakshirajan K, Annachhatre AP, Lens PNL, J. Ind. Eng. Chem., 19(3), 841, 2013
  41. Luo XG, Deng ZF, Lin XY, Zhang C, J. Hazard. Mater., 187(1-3), 182, 2011
  42. Oguz E, Ersoy M, Chem. Eng. J., 164(1), 56, 2010
  43. Tsai WC, de Luna MDG, Bermillo-Arriesgado HLP, Futalan CM, COlades JI, Wan MW, Int. J. Polym. Sci., 2016, 1, 2016
  44. Khitous M, Moussous S, Selatnia A, Kherat M, Des. Water Treat., 57, 16559, 2016
  45. Sivakumar PNPP, Palanisamy PN, J. Sci. Ind. Res., 68, 894, 2009
  46. Chowdhury ZZ, Zain SM, Khan RA, Rafique RF, Khalid K, BioResourc., 7, 2895, 2012