Issue
Korean Journal of Chemical Engineering,
Vol.36, No.1, 21-29, 2019
Asymmetrical breakup and size distribution of droplets in a branching microfluidic T-junction
The breakup and distribution of droplets at a branching T-junction were investigated experimentally by a high-speed camera. The effects of two-phase flow rates, two-phase Reynolds number and capillary number of the dispersed phase on droplet volume distribution were studied. The results indicated that the volume distribution ratio λ decreases first and then increases with the increase of two-phase flow ratio Qd/Qc. Similarly, as the Reynolds number Rec of the continuous phase increases, the volume distribution ratio λ also decreases at first and then increases. The increase of Reynolds number Red of the dispersed phase would lead to a reduction in the volume distribution ratio λ. Moreover, the increase of the capillary number Cad of dispersed phase could result in an increase in the volume distribution ratio λ. Correlations for predicting the volume distribution ratio were proposed, and the calculated results show good agreement with experimental data.
[References]
  1. Song H, Tice JD, Ismagilov RF, Angew. Chem., 115, 792, 2003
  2. Min SK, Lee BM, Hwang JH, Ha SH, Shin HS, Korean J. Chem. Eng., 29(3), 392, 2012
  3. Santos J, Trujillo-Cayado LA, Calero N, Alfaro MC, Munoz J, J. Ind. Eng. Chem., 36, 90, 2016
  4. Boogar RS, Gheshlaghi R, Mahdavi MA, Korean J. Chem. Eng., 30(1), 45, 2013
  5. Hwang JW, Choi JH, Choi B, Lee G, Lee SW, Koo YM, Chang WJ, Korean J. Chem. Eng., 33(1), 57, 2016
  6. Cubaud T, Ho CM, Phys. Fluids, 16, 4575, 2004
  7. Link DR, Anna SL, Weitz DA, Stone HA, Phys. Rev. Lett., 92, 054503, 2004
  8. Leshansky AM, Pismen LM, Phys. Fluids, 21, 023303, 2009
  9. Belloul M, Engl W, Colin A, Panizza P, Ajdari A, Phys. Rev. Lett., 102, 194502, 2009
  10. Parthiban P, Khan SA, Lab Chip, 12, 582, 2012
  11. Jose BM, Cubaud T, Microfluid. Nanofluid., 12, 687, 2012
  12. Jullien MC, Ching MJTM, Cohen C, Menetrier L, Tabeling P, Phys. Fluids, 21, 072001, 2009
  13. Hoang DA, Portela LM, Kleijn CR, Kreutzer MT, van Steijn V, J. Fluid Mech., 717, 2013
  14. Chen B, Li G, Wang W, Wang P, Appl. Therm. Eng., 88, 94, 2015
  15. Yong YM, Li S, Yang C, Yin XL, Chin. J. Chem. Eng., 21(5), 463, 2013
  16. Bedram A, Moosavi A, Eur. Phys. J. E, 34, 78, 2011
  17. Samie M, Salari A, Shafii MB, Phys. Rev. E, 87, 053003, 2013
  18. Fu TT, Ma YG, Li HZ, AIChE J., 60(5), 1920, 2014
  19. Wang XD, Zhu CY, Fu TT, Ma YG, Chem. Eng. Sci., 111, 244, 2014
  20. Wang XD, Zhu CY, Fu TT, Ma YG, AIChE J., 61(3), 1081, 2015
  21. Moritani T, Yamada M, Seki M, Microfluid. Nanofluid., 11, 601, 2011
  22. Chen JF, Wang SF, Cheng S, Chem. Eng. Sci., 84, 706, 2012
  23. Liu YC, Sun WC, Wang SF, Chem. Eng. Sci., 158, 267, 2017
  24. Kim J, Won J, Song S, Biomicrofluidics, 8, 054105, 2014
  25. Lignel S, Salsac AV, Drelich A, Leclerc E, Pezron I, Colloids Surf. A: Physicochem. Eng. Asp., 531, 164, 2017
  26. Du W, Fu TT, Zhu CY, Ma YG, Li HZ, AIChE J., 62(1), 325, 2016
  27. Fu TT, Ma YG, Funfschilling D, Li HZ, Chem. Eng. Sci., 66(18), 4184, 2011