Issue
Korean Journal of Chemical Engineering,
Vol.35, No.12, 2480-2486, 2018
Spray pyrolysis synthesis of mesoporous TiO2 microspheres and their post modification for improved photocatalytic activity
Mesoporous TiO2 microspheres were prepared by spray pyrolysis for photocatalysis. Post modification of TiO2 by heat treatment was performed to optimize its photocatalytic performance. First, spherical TiO2 particles with mesoporous structure were synthesized at pyrolysis temperatures of 500, 600, and 700 °C. After characterization by XRD, SEM, and N2 adsorption, a sample prepared at 500 °C was found to possess desirable properties for photocatalytic performance through post-modification. In methylene blue degradation, mesoporous TiO2 microspheres synthesized at 500 °C outperformed other microspheres. Furthermore, samples obtained by spray pyrolysis at 500 °C were calcined at various temperatures as a post-modification process. The sample calcined at 350 °C showed improved photocatalytic activity due to optimal anatase crystallinity and surface area.
[References]
  1. Yadav HM, Kim JS, Pawar SH, Korean J. Chem. Eng., 33(7), 1989, 2016
  2. Lalhriatpuia C, Tiwari A, Shukla A, Tiwari D, Lee SM, Korean J. Chem. Eng., 33(12), 3367, 2016
  3. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735, 1995
  4. Lawton LA, Robertson PKJ, Cornish BJPA, Jaspars M, Environ. Sci. Technol., 33, 771, 1999
  5. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  6. Noh J, Yi M, Hwang S, Im KM, Yu T, Kim J, J. Ind. Eng. Chem., 33, 369, 2016
  7. Song MS, ngamuthu KV, Han EJ, Jeon KJ, Seo JW, Korean J. Chem. Eng., 33(8), 2392, 2016
  8. Zhang T, Low J, Koh K, Yu J, Asefa T, ACS Sustain. Chem. Eng., 6(1), 531, 2018
  9. Yang Z, Shi Y, Wang B, Appl. Surf. Sci., 31, 192, 2017
  10. Schneider J, Matsuoka M, Takeuchi M, Zhang JL, Horiuchi Y, Anpo M, Bahnemann DW, Chem. Rev., 114(19), 9919, 2014
  11. Wang CC, Ying JY, Chem. Mater., 11(11), 3113, 1999
  12. Yoo KS, Lee TG, Kim J, Microporous Mesoporous Mater., 84, 211, 2005
  13. Choi J, Kim J, Yoo KS, Lee TG, Powder Technol., 181(1), 83, 2008
  14. Marquez-Alvarez C, Zilkova N, Perez-Pariente J, Cejka J, Catal. Rev., 50, 222, 2008
  15. Cejka J, Appl. Catal. A: Gen., 254(2), 327, 2003
  16. Vaudry F, Khodabandeh S, Davis ME, Chem. Mater., 8, 1451, 1996
  17. Kim Y, Kim P, Kim C, Yi J, J. Mater. Chem., 13, 2353, 2003
  18. Balint I, Miyazaki A, Microporous Mesoporous Mater., 122, 216, 2009
  19. Hidalgo D, Messina R, Sacco A, Manfredi D, Vankova S, Garrone E, Saracco G, Hernandez S, Int. J. Hydrog. Energy, 39(36), 21512, 2014
  20. Camara RM, Portela R, Gutierrez-Martin F, Sanchez B, Chem. Eng. J., 283, 535, 2016
  21. Casino S, Di Lupo F, Francia C, Tuel A, Bodoardo S, Gerbaldi C, J. Alloy. Compd., 594, 114, 2014
  22. Yada M, Hiyoshi H, Ohe K, Machida M, Kijima T, Inorg. Chem., 36(24), 5565, 1997
  23. Yada M, Kitamura H, Machida M, Kijima T, Langmuir, 13(20), 5252, 1997
  24. Strobel R, Baiker A, Pratsinis SE, Adv. Powder Technol., 17(5), 457, 2006
  25. Arutanti O, Nandiyanto ABD, Ogi T, Iskandar F, Kim TO, Okuyama K, J. Alloy. Compd., 591, 121, 2014
  26. Bettini LG, Dozzi MV, Della Foglia F, Chiarello GL, Selli E, Lenardi C, Piseri P, Milani P, Appl. Catal. B: Environ., 178, 226, 2015
  27. Choi H, Kim D, Yoon SP, Han J, Ha S, Kim J, J. Anal. Appl. Pyrolysis, 112, 276, 2015
  28. Choi H, Yoon SP, Han J, Kim J, Othman MR, J. Ind. Eng. Chem., 47, 254, 2017
  29. Sing KSW, Carbon, 32, 1311, 1994
  30. Donohue MD, Aranovich GL, Adv. Colloid Interface Sci., 76-77, 137, 1998
  31. Tang JW, Durrant JR, Klug DR, J. Am. Chem. Soc., 130(42), 13885, 2008
  32. Li XZ, Chen CC, Zhao JC, Langmuir, 17(13), 4118, 2001