Issue
Korean Journal of Chemical Engineering,
Vol.35, No.12, 2474-2479, 2018
Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma
Plasma-enhanced atomic layer deposition (PEALD) is well-known for fabricating conformal and uniform films with a well-controlled thickness at the atomic level over any type of supporting substrate. We prepared nickel oxide (NiO) thin films via PEALD using bis(ethylcyclopentadienyl)-nickel (Ni(EtCp)2) and O2 plasma. To optimize the PEALD process, the effects of parameters such as the precursor pulsing time, purging time, O2 plasma exposure time, and power were examined. The optimal PEALD process has a wide deposition-temperature range of 100-325 °C and a growth rate of 0.037±0.002 nm per cycle. The NiO films deposited on a silicon substrate with a high aspect ratio exhibited excellent conformality and high linearity with respect to the number of PEALD cycles, without nucleation delay.
[References]
  1. Rai P, Yoon JW, Jeong HM, Hwang SJ, Kwak CH, Lee JH, Nanoscale, 6, 822, 2014
  2. Wang J, Wei L, Zhang L, Zhang J, Wei H, Jiang C, Zhang Y, J. Mater. Chem., 22, 20038, 2012
  3. Betancur R, Maymo M, Elias X, Vuong LT, Martorell J, Sol. Energy Mater. Sol. Cells, 95(2), 735, 2011
  4. Al-Ghamdi AA, Mahmoud WE, Yaghmour SJ, Al-Marzouki FM, J. Alloy. Compd., 486, 9, 2009
  5. Zhu Z, Bai Y, Zhang T, Liu Z, Long X, Wei Z, Wang Z, Zhang L, Wang J, Yan F, Yang S, Angew. Chem.-Int. Edit., 126, 12779, 2014
  6. Ukoba KO, Eloka-Eboka AC, Inambao FL, Renew. Sust. Energ. Rev., 82, 2900, 2018
  7. Kim JH, Lee HM, Kang DW, Lee KM, Kim CK, Korean J. Chem. Eng., 33, 9, 2016
  8. Barreca D, Massignan C, Chem. Mater., 13(2), 588, 2001
  9. Yang P, Tong X, Wang G, Gao Z, Guo X, Qin Y, ACS Appl. Mater. Interfaces, 7, 4772, 2015
  10. Wang G, Peng X, Yu L, Wan G, Lin S, Qin Y, J. Mater. Chem. A, 3, 2734, 2015
  11. Kim DH, Kim YJ, Song YS, Lee BT, Kim JH, Suh S, Gordon R, J. Electrochem. Soc., 150(10), C740, 2003
  12. Yang TS, Cho WT, Kim M, An KS, Chung TM, Kim CG, Kim Y, J. Vac. Sci. Technol. A, 23(4), 1238, 2005
  13. Lindahl E, Ottosson M, Carlsson JO, Chem. Vap. Deposition, 15, 186, 2009
  14. Yu L, Wang G, Wan G, Wang G, Lin S, Li X, Wang K, Bai Z, Xiang Y, Dalton Trans., 45, 13779, 2016
  15. Wang G, Peng X, Yu L, Wan G, Lin S, Qin Y, J. Mater. Chem. A, 3, 2734, 2015
  16. Lu HL, Scarel G, Wiemer C, Perego M, Spiga S, Fanciulli M, Pavia G, J. Electrochem. Soc., 155(10), H807, 2008
  17. Lu HL, Scarel G, Li XL, Fanciulli M, J. Cryst. Growth, 310(24), 5464, 2008
  18. Barr MKS, Assaud L, Wu YL, Laffon C, Parent P, Bachmann J, Santinacci L, Electrochim. Acta, 179, 504, 2015
  19. Motamedi P, Bosnick K, Cui K, Cadien K, Hogan JD, ACS Appl. Mater. Interfaces, 9, 24722, 2017
  20. Kim YW, Kim DH, Korean J. Chem. Eng., 29(7), 969, 2012
  21. Hufnagel AG, Henß AK, Hoffmann R, Zeman OEO, Haringer S, Rohlfing DF, Bein T, Adv. Mater. Interfaces, 5, 170153, 2018
  22. Malwala D, Gopinath P, Environ. Sci.: Nano, 2, 78, 2015
  23. Ramachandran RK, Dendooven J, Detavernier C, J. Mater. Chem. A, 2, 10662, 2014
  24. Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195, 2017
  25. Chodankar NR, Ji SH, Kim DH, J. Taiwan Inst. Chem. Eng., 80, 503, 2017
  26. Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 35(2), 567, 2018
  27. Chen X, Pomerantseva E, Banerjee P, Gregorczyk K, Ghodssi R, Rubloff G, Chem. Mater., 24, 1255, 2012