Issue
Korean Journal of Chemical Engineering,
Vol.35, No.12, 2421-2429, 2018
Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices
Thiol-based self-assembled anchor linked to glucose oxidase (GOx) and gold nanoparticle (GNP) cluster is suggested to enhance the performance of glucose biosensor. By the adoption of thiol-based anchors, the activity of biocatalyst consisting of GOx, GNP, polyethyleneimine (PEI) and carbon nanotube (CNT) is improved because they play a crucial role in preventing the leaching out of GOx. They also promote electron collection and transfer, and this is due to a strong hydrophobic interaction between the active site of GOx and the aromatic ring of anchor, while the effect is optimized with the use of thiophenol anchor due to its simple configuration. Based on that, it is quantified that by the adoption of thiophenol as anchor, the current density of flavin adenine dinucleotide (FAD) redox reaction increases about 42%, electron transfer rate constant (ks) is 9.1±0.1 s-1 and the value is 26% higher than that of catalyst that does not use the anchor structure.
[References]
  1. Inamuddin, Beenish, Naushad M, Korean J. Chem. Eng., 33(1), 120, 2016
  2. Son JW, Hwnag JS, Lee DH, Khan MS, Jo YH, Lee KW, Park CH, Chavan S, Seo YM, Choi YH, Kim SS, Kim DS, Na DK, Choi JH, Korean J. Chem. Eng., 35(3), 805, 2018
  3. Wang J, Chem. Rev., 108(2), 814, 2008
  4. World Health Organization (WHO) of United Nations (UN). Global Report on Diabetes sheet. Available online: http://www.who.int/diabetes/global-report/WHD16-press-release-EN_3.pdf(Accessed on May 25th, 2018).
  5. Chung Y, Kwon Y, Korean Chem. Eng. Res., 53(6), 802, 2015
  6. Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867, 2004
  7. Lide DR, CRC Handbook of Chemistry and Physics, 81st Ed., CRC Press, Boca Raton, FL (2000).
  8. Chung Y, Ahn Y, Kim DH, Kwon Y, J. Power Sources, 337, 152, 2017
  9. Guiseppi-Elie A, Lei C, Baughman RH, Nanotechnology, 13, 559, 2002
  10. Liu Y, Zhao Y, Sun B, Chen C, Accounts Chem. Res., 46, 702, 2013
  11. Chung Y, Hyun KH, Kwon Y, Nanoscale, 8, 1161, 2016
  12. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197, 2015
  13. Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8, 9201, 2016
  14. Christwardana M, Enzyme Microb. Technol., 106, 1, 2017
  15. McLean JA, Stumpo KA, Russell DH, J. Am. Chem. Soc., 127(15), 5304, 2005
  16. Nativo P, Prior IA, Brust M, ACS Nano, 2, 1639, 2008
  17. Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009, 2017
  18. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 30128, 2016
  19. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y, Biosens. Bioelectron., 25, 901, 2009
  20. Laviron E, J. Electroanal. Chem., 101, 19, 1979
  21. Chung Y, Christwardana M, Tannia DC, Kim KJ, Kwon Y, J. Power Sources, 360, 172, 2017
  22. Christwardana M, Chung Y, Kwon Y, NPG Asia Mater., 9(6), e386, 2017
  23. Christwardana M, Chung Y, Kwon Y, Nanoscale, 9, 1993, 2017
  24. Wooten M, Karra S, Zhang M, Gorski W, Anal. Chem., 86, 752, 2014
  25. Christwardana M, Kwon Y, J. Power Sources, 299, 604, 2015
  26. Leskovac V, Trivic S, Wohlfahrt G, Kandrac J, Pericin D, Int. J. Biochem. Cell Biol., 37, 731, 2005
  27. Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht HJ, Acta. Cryst. D, 55, 969, 1999
  28. Wohlfahrt G, Trivic S, Zeremski J, Pericin D, Leskovac V, Mol. Cell. Biochem., 260, 69, 2004
  29. Ji J, Christwardana M, Chung Y, Kwon Y, Trans. Korean Hydrog. New Energy Soc., 27, 526, 2016
  30. Christwardana M, Kim DH, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 180, 2018
  31. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916, 2017