Issue
Korean Journal of Chemical Engineering,
Vol.35, No.12, 2403-2412, 2018
Effect of chemical input during wet air oxidation pretreatment of rice straw in reducing biomass recalcitrance and enhancing cellulose accessibility
The present study was aimed at evaluating the effect of variable sodium carbonate (Na2CO3) loading during wet air oxidation (WAO) pretreatment of rice straw in reducing biomass recalcitrance. The research study was intended to increase the cellulose recovery, hemicellulose solubilization, lignin removal in the solid fraction and limiting the generation of inhibitors in the liquid fraction while reducing the chemical input. The operating condition of 169 °C, 4 bar, 18 min and 6.5 g/L Na2CO3 loading resulted in maximum cellulose recovery of 82.07% and hemicellulose solubilization and lignin removal of 85.43% and 65.42%, respectively, with a total phenolic content of 0.36 g/L in the liquid fraction. The crystallinity index increased from 47.69 to 51.25 along with enzymatic digestibility with an increase in Na2CO3 loading from 0 to 6.5 g/L as a result of removal of barriers for saccharification via effective cleavage of ether and ester bonds cross-linking the carbohydrates and lignin as indicated by FT-IR spectroscopy. A further increase in the Na2CO3 loading to 9.5 g/L did not significantly increase the sugar release. Thus, it was concluded that 6.5 g/L Na2CO3 during WAO is sufficient to increase the delignification and deacetylation, leading to significant changes in apparent cellulose crystallinity inter alia improvement in cellulose accessibility and digestibility of rice straw.
[References]
  1. Ranjan A, Khanna S, Moholkar VS, Appl. Energy, 103, 32, 2013
  2. Kaur K, Phutela UG, Paddy Water Environ., 14(1), 113, 2016
  3. Morone A, Pandey RA, Renew. Sust. Energ. Rev., 37, 21, 2014
  4. Kim JS, Lee YY, Kim TH, Bioresour. Technol., 199, 42, 2016
  5. Morone A, Pandey RA, Chakrabarti T, J. Environ. Chem. Eng., 6(3), 3673, 2017
  6. Yang LF, Cao J, Jin YC, Chang HM, Jameel H, Phillips R, Li ZZ, Bioresour. Technol., 124, 283, 2012
  7. Singh J, Suhag M, Dhaka A, Carbohydr. Polym., 117, 624, 2015
  8. Kim I, Lee B, Park JY, Choi SA, Han JI, Carbohydr. Polym., 99, 563, 2014
  9. Schmidt AS, Thomsen AB, Bioresour. Technol., 64(2), 139, 1998
  10. Salehi SMA, Karimi K, Behzad T, Poornejad N, Energy Fuels, 26(12), 7354, 2012
  11. Morone A, Sharma G, Sharma A, Chakrabarti T, Pandey RA, Renew. Energy, 120, 88, 2018
  12. Sluiter J, Sluiter A, NREL, NREL/TP-510-48087, 1 (2011).
  13. Foyle T, Jennings L, Mulcahy P, Bioresour. Technol., 98(16), 3026, 2007
  14. Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T, Biotechnol. Biofuels, 1(1), 1, 2008
  15. Ainsworth EA, Gillespie KM, Nature Protocols, 2(4), 875, 2007
  16. Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H, Biotechnol. Biofuels, 6(1), 1, 2013
  17. https://www.alibaba.com/ (Last assessed on June 20, 2018).
  18. Jonsson LJ, Martin C, Bioresour. Technol., 199, 103, 2016
  19. Bjerre AB, Schmidt AS, Risø-R-967(EN), Risø National Laboratory, Roskilde, Denmark (1997).
  20. Morone A, Chakrabarti T, Pandey RA, Cellulose, 24(11), 4885, 2017
  21. Morone A, Pandey RA, Chakrabarti T, Ind. Crop. Prod., 99, 7, 2017
  22. Gupta R, Lee YY, Bioresour. Technol., 101(21), 8185, 2010
  23. Elzaawely AA, Maswada HF, El-Sayed MEA, Ahmed ME, Int. Lett. Natural Sci., 64, 1, 2017
  24. Ximenes E, Kim Y, Ladisch MR, In: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, Wiley, 39 (2013).
  25. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH, Carbohydr. Res., 340(15), 2376, 2005
  26. He YF, Pang YZ, Liu YP, Li XJ, Wang KS, Energy Fuels, 22(4), 2775, 2008
  27. Adapa PK, Karunakaran C, Tabil LG, Schoenau GJ, The Canadian Society for Bioengineering: Prince Edward Island, Canada, 12 (2009).
  28. Kim SB, Lee SJ, Lee JH, Jung YR, Thapa LP, Kim JS, Um Y, Park C, Kim SW, Biotechnol. Biofuels, 6(1), 1, 2013
  29. Banerjee S, Sen R, Morone A, Chakrabarti T, Pandey RA, Mudliar S, Dyn. Biochem. Process Biotechnol. Mol. Biol., 6(2), 43, 2012
  30. Ko JK, Bak JS, Jung MW, Lee HJ, Choi IG, Kim TH, Kim KH, Bioresour. Technol., 100(19), 4374, 2009
  31. Mirmohamadsadeghi S, Chen Z, Wan CX, Bioresour. Technol., 209, 386, 2016
  32. Steam tables, http://www.tlv.com/global/TI/calculator/steam-table (accessed January 15, 2018).
  33. Jin YC, Huang T, Geng WH, Yang LF, Bioresour. Technol., 137, 294, 2013
  34. Sindhu R, Binod P, Janu KU, Sukumaran RK, Pandey A, World J. Microbiol. Biotechnol., 28(2), 473, 2012
  35. Domanski J, Borowski S, Marchut-Mikolajczyk O, Kubacki P, Biomass Bioenergy, 91, 91, 2016
  36. Raeisi SM, Tabatabaei M, Ayati B, Ghafari A, Mood SH, Waste Biomass Valor., 7(1), 97, 2016