Issue
Korean Journal of Chemical Engineering,
Vol.35, No.12, 2355-2364, 2018
Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone
We evaluated the effect of particle size and associated dynamics on a hydrocyclone separation process in order to understand the movement of the particle trajectories inside the hydrocyclone via numerical analysis, with particles of acid hydrolysis residues discharged in TiO2 production via the sulfate method as a case study. The values obtained from the numerical simulation were successfully compared with those from experimental tests in the literature, allowing a description of the dynamics of the particles, their acting forces, and their relevant properties together with separation efficiency. The results showed that particle motion is jointly controlled by the drag force, the pressure gradient force and the centrifugal force. With increasing particle size, the influence of the drag force is weakened, whereas that of the centrifugal force and pressure gradient is strengthened. Factors including particle density, slurry viscosity, and inlet slurry flow rate also contribute to a clear and useful understanding of particle motion behavior in the hydrocyclone as a method for improving the separation efficiency.
[References]
  1. Belardi G, Piga L, Quaresima S, Shehu N, Int. J. Miner. Process., 53(3), 145, 1998
  2. Svarovsky L, Hydrocyclones[M], Holt, Rinehart and Winston, London (1984).
  3. Plitt LR, CIM Bull., 69, 114, 1976
  4. Wang B, Yu AB, AIChE J., 56(7), 1703, 2010
  5. Wang B, Yu AB, Miner. Eng., 19(10), 1022, 2006
  6. Yoshida H, Takashina T, Fukui K, Iwanaga T, Powder Technol., 140(1-2), 1, 2004
  7. Noroozi S, Hashemabadi SH, Chem. Eng. Technol., 32(12), 1885, 2009
  8. Vieira LGM, Silva DO, Barrozo MAS, Chem. Eng. Technol., 39(8), 1406, 2016
  9. Tang B, Xu Y, Song X, Sun Z, Yu J, Trans. Nonferrous Met. Soc. China, 27, 1645, 2017
  10. Vieira LGM, Barrozo MAS, Miner. Eng., 57, 50, 2014
  11. Tang B, Xu YX, Song XF, Sun Z, Yu JG, Chem. Eng. J., 278, 504, 2015
  12. Mokni I, Dhaouad H, Bournot P, Mhiri H, Chem. Eng. Sci., 122, 500, 2015
  13. Kilavuz FS, Gulsoy OY, Int. J. Miner. Process., 98(3-4), 163, 2011
  14. Silva NKG, Silva DO, Vieira LGM, Barrozo MAS, Powder Technol., 286, 305, 2015
  15. Ghodrat M, Kuang SB, Yu AB, Vince A, Barnett GD, Barnett PJ, Miner. Eng., 62, 74, 2014
  16. Wang B, Yu AB, Chem. Eng. J., 135(1-2), 33, 2008
  17. Vieira LGM, Damasceno JJR, Barrozo MAS, Chem. Eng. Process., 49(5), 460, 2010
  18. Chu LY, Chen WM, Lee XZ, Chem. Eng. Sci., 57(1), 207, 2002
  19. Bai Z, Wang H, Tu S, Petrol. Sci. Technol., 28, 575, 2010
  20. Hwang K, Wu W, Qian S, Nagase Y, Sep. Sci. Technol., 15, 3777, 2008
  21. Hwang KJ, Hwang YW, Yoshida H, Shigemori K, Powder Technol., 232, 41, 2012
  22. Zhao LX, Jiang MH, Xu BR, Zhu BJ, Chem. Eng. Res. Des., 90(12), 2129, 2012
  23. Fu P, Wang F, Yang X, Ma L, Cui X, Wang H, Sci. Technol., 51, 1587, 2017
  24. Liu PK, Chu LY, Wang J, Yul YF, Chem. Eng. Technol., 31(3), 474, 2008
  25. Cui R, Wang G, Li M, Trans. Noferrous Met. Soc. China, 25, 2422, 2015
  26. Cui B, Wei D, Gao S, Liu W, Feng Y, Trans. Noferrous Met. Soc. China, 24, 2642, 2014
  27. Wang ZB, Chu LY, Chen WM, Wang SG, Chem. Eng. J., 138(1-3), 1, 2008
  28. Chang YF, Ilea CG, Aasen OL, Hoffmann AC, Chem. Eng. Sci., 66(18), 4203, 2011
  29. Nageswararao K, Chem. Eng. J., 80(1-3), 251, 2000
  30. Patil DD, Rao TC, Miner. Metall. Process., 18, 4, 2001
  31. Hwang K, Hsueh W, Nagase Y, Dry Technol., 26, 1002, 2008
  32. Kozołub P, Klimanek A, Białecki RA, Adamczyk WP, Particuology, 31, 170, 2016
  33. Adamczyk WP, Myohanen K, Hartge EU, Ritvanen J, Klimanek A, Hyppanen T, Bialecki RA, Energy, 143, 219, 2018
  34. Xu YX, Song XF, Sun Z, Tang B, Li P, Yu JG, Ind. Eng. Chem. Res., 52(15), 5470, 2013
  35. Morsi SA, Alexander AJ, J. Fluid Mech., 55, 193, 1972
  36. Hsieh KT, Phenomenological Model of the Hydrocyclone[D]. Ph.D. Thesis, The University of Utah, Salt Lake City, UT, U.S.A.(1988).