Issue
Korean Journal of Chemical Engineering,
Vol.35, No.11, 2290-2295, 2018
Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test
An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and 90 °C). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.
[References]
  1. Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), A59, 2002
  2. Kurtz J, Dinh H, Saur G, Ainscough C, DOE 2017 Annual Merit Review, Washington, DC, June 8 (2017).
  3. Rodgers MP, Bonville LJ, Kunz HR, Slattery DK, Fenton JM, Chem. Rev., 112(11), 6075, 2012
  4. Wilkinson DP, St-Pierre J, Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, Wiley, Chichester, England, 611 (2003).
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  6. Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838, 2006
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543, 2003
  8. Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y, J. Electrochem. Soc., 157(1), A82, 2010
  9. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41, 2004
  10. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  11. DOE Fuel Cell Technologies Office, Protocols for Testing PEM Fuel Cells and Fuel Cell Components, Page 3.4-46 (2016).
  12. Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283, 2008
  13. Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222, 2006
  14. Healy J, Hayden C, Xie T, Olson K, Waldo R, Brundage M, Fuel Cells, 5(2), 302, 2005
  15. Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98(9), 1766, 2013
  16. Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23, 2017
  17. Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66, 2013
  18. Chang Z, Yan H, Tian J, Pan H, Pu H, Polym. Degrad. Stabil., 138, 98, 2017
  19. Liu W, Ruth K, Rusch G, J. New Mater. Mater. Electrochem. Syst., 4, 227, 2001
  20. Kieitz B, Kolde J, Priester S, Baczkwski C, Crum M, ECS Trans., 41(1), 1521, 2011
  21. Jeong J, Jeong J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 52(4), 425, 2014
  22. Qiao JL, Saito M, Hayamizu K, Okada T, J. Electrochem. Soc., 153(6), A967, 2006
  23. Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem. Solid State Lett., 7(7), A209, 2004
  24. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013
  25. Liang Z, Chen W, Liu J, Wang S, Zhou Z, Li W, Sun G, Xin Q, J. Membr. Sci., 23, 39, 2004
  26. Ludvigsson M, Lindgren J, Tegenfeldt J, Electrochim. Acta, 45(14), 2267, 2000
  27. Cons FD, ECS Trans., 16(2), 235, 2008
  28. Danilczuk M, Coms FD, Schlick S, J. Phys. Chem. B, 113(23), 8031, 2009
  29. Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem. Solid State Lett., 7, 145, 2004
  30. Ohguri N, Nosaka AY, Nosaka Y, J. Power Sources, 195(15), 4647, 2010
  31. Liu W, Zuckerbrod D, J. Electrochem. Soc., 152(6), A1165, 2005
  32. Kundu S, Fowler MW, Simon LC, Abouatallah R, Beydokhti N, J. Power Sources, 183(2), 619, 2008
  33. Zhang L, Mukerjee S, J. Electrochem. Soc., 153(6), A1062, 2006
  34. Samms SR, Wasmus S, Savinell RF, J. Electrochem. Soc., 143(5), 1498, 1996
  35. Almeida SH, Kawano Y, J. Therm. Anal. Calorim., 58, 569, 1999
  36. Lee HJ, Cho MK, Jo YY, Polym. Degrad. Stabil., 97, 1010, 2012
  37. Deng Q, Moore RB, Mauritz KA, J. Appl. Polym. Sci., 68(5), 747, 1998