Issue
Korean Journal of Chemical Engineering,
Vol.35, No.11, 2283-2289, 2018
Template-free preparation of TiO2 microspheres for the photocatalytic degradation of organic dyes
TiO2 microspheres were successfully synthesised by simple solution phase method by using various amount of titanium butoxide as precursor. The prepared TiO2 were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance absorption spectra (UV-DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XRD analysis revealed that the as-synthesized TiO2 microsphere poses an anatase phase. The photocatalytic degradation experiments were carried out with three different dyes, such as methylene blue, brilliant black, reactive red-120 for four hours under UV light irradiation. The results show that TiO2 morphology had great influence on photocatalytic degradation of organic dyes. The experimental results of dye mineralization indicated the concentration was reduced by a high portion of up to 99% within 4 hours. On the basis of various characterization of the photocatalysts, the reactions involved to explain the photocatalytic activity enhancement due to the concentration of titanium butoxide and morphology include a better separation of photogenerated charge carriers and improved oxygen reduction inducing a higher extent of degradation of aromatics.
[References]
  1. Mahmoodi NM, Abdi J, Oveisi M, Asli MA, Vossoughi M, Mater. Res. Bull., 100, 357, 2018
  2. Khataee AR, Kasiri MB, J. Mol. Catal. A-Chem., 328(1-2), 8, 2010
  3. Starling MCVM, Castro LAS, Marcelino RBP, Leao MMD, Amorim CC, Environ. Sci. Pollut. Res., 24, 6222, 2017
  4. Domingues FS, Freitas TKFS, de Almeida CA, de Souza RP, Ambrosio E, Palacio SM, Garcia JC, Environ. Technol., 1 (2017), DOI:10.1080/09593330.2017.1418913.
  5. Jaafarzadeh N, Takdastan A, Jorfi S, Ghanbari F, Ahmadi M, Barzegar G, J. Mol. Liq., 256, 162, 2018
  6. Souza RP, Freitas TK, Domingues FS, Pezoti O, Ambrosio E, Ferrari-Lima AM, Garcia JC, J. Photochem. Photobiol. A-Chem., 329, 9, 2016
  7. Asghar A, Raman AAA, Daud WMA, J. Clean Prod., 87, 826, 2015
  8. Touati A, Hammedi T, Najjar W, Ksibi Z, Sayadi S, J. Ind. Eng. Chem., 35, 36, 2016
  9. Farouk HU, Raman AAA, Daud WMAW, J. Ind. Eng. Chem., 33, 11, 2016
  10. Borges ME, Sierra M, Cuevas E, Garcia RD, Esparza P, Sol. Energy, 135, 527, 2016
  11. Reza M, Kurny ASW, Gulshan F, Appl. Water Sci., 7, 1569, 2017
  12. Ariyanti D, Maillot M, Gao W, J. Environ. Chem. Eng., 6, 539, 2018
  13. Behpour M, Foulady-Dehaghi R, Mir N, Sol. Energy, 158, 636, 2017
  14. Zhao W, He X, Peng Y, Zhang H, Sun D, Wang X, Water Sci. Technol., 75, 1494, 2017
  15. Khanna A, Shetty VK, Sol. Energy, 99, 67, 2014
  16. Park S, Kim W, Kim Y, Korean J. Chem. Eng., 34(5), 1500, 2017
  17. Hamaloglu KO, Sag E, Bilir A, Tuncel A, Mater. Chem. Phys., 207, 359, 2018
  18. Wang C, Liu H, Liu Y, He GA, Jiang CC, Appl. Surf. Sci., 319, 2, 2014
  19. Lin CJ, Yang WT, Chou CY, Liou SYH, Chemosphere, 152, 490
  20. Chen X, Mao SS, Chem. Rev., 107(7), 2891, 2007
  21. Kubelka P, Munk F, Tech. Phys., 12, 593, 1931
  22. Kubelka P, J. Opt. Soc. Am., 38, 448, 1948
  23. Tang H, Prasad K, Sanjines R, Schmid P, Levy F, J. Appl. Phys., 45, 2042, 1994
  24. Reddy KM, Manorama SV, Reddy AR, Mater. Chem. Phys., 78(1), 239, 2003
  25. Zhang J, Zhou P, Liu J, Yu J, Phys. Chem. Chem. Phys., 16, 20382, 2014
  26. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS, Langmuir, 17(9), 2664, 2001
  27. Burke AR, Brown CR, Bowling WC, Glaub JE, Kapsch D, Love CM, Whitaker RB, Moddeman WE, J. Surf. Interface Anal., 11, 353, 1988
  28. Park HA, Liu S, Oh Y, Salvador PA, Rohrer GS, Islam MF, ACS Nano., 11, 2150, 2017
  29. Wang F, Ho JH, Jiang Y, Amal R, ACS Appl. Mater. Interf., 7, 23941, 2015
  30. Sharif SH, Aldo AR, Ind. Eng. Chem. Res., 47, 6598, 2008