Issue
Korean Journal of Chemical Engineering,
Vol.35, No.11, 2232-2240, 2018
Valorization of galactose into levulinic acid via acid catalysis
We applied methanesulfonic acid (MSA) as a green catalyst to produce levulinic acid (LA) from monomeric sugars. To optimize reaction factors and assess the effect of reciprocal interactions, a statistical experimental design was applied. Optimized result of 40.7% LA yield was obtained under the following conditions: 60 g/L galactose, 0.4M MSA at 188 °C for 26.7 min. On the other hand, 66.1% LA yield was achieved under 60 g/L fructose and 0.4M MSA at 188 °C for 36 min conditions. For the effect of combined severity factor on the LA yield from galactose, the LA yield showed a peaked pattern, which was linearly increased until a CSF 3.2 and then diminished with a high CSF. Moreover, it was closely fitted to a non-linear Gaussian peak pattern with a high regression value of 0.989. These results suggest that MSA and galactose, derived from marine red macro-algae, can potentially be applied for the conversion into platform chemicals.
[References]
  1. Bozell JJ, Petersen GR, Green Chem., 12, 539, 2010
  2. Kamm B, Gruber PR, Kamm M, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
  3. Werpy T, Petersen G, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO (2004).
  4. Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143, 2015
  5. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499, 2013
  6. Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548, 2015
  7. Hayes DJ, Fitzpatrick S, Hayes MHS, Ross JRH, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008).
  8. Rackemann DW, Doherty WOS, Biofuels Bioprod. Bioref., 5, 198, 2011
  9. Zang H, Yu S, Yu P, Ding H, Du Y, Yang Y, Zhang Y, Carbohydr. Res., 442, 1, 2017
  10. Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH, Bioprocess. Biosyst. Eng., 38, 207, 2015
  11. Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115, 2018
  12. Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480, 2012
  13. Rackemann DW, Bartley JP, Doherty WOS, Ind. Crop. Prod., 52, 46, 2014
  14. Wang YX, Pedersen CM, Deng TS, Qiao Y, Hou XL, Bioresour. Technol., 143, 384, 2013
  15. Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK, J. Appl. Phycol., 24, 857, 2012
  16. Percival E, Br. Phycol. J., 14, 103, 1979
  17. Gernon MD, Wu M, Buszta T, Janney P, Green Chem., 1, 127, 1999
  18. Mthembu LD, Durban University of Technology, Durban, South Africa, Master Thesis (2015).
  19. Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41, 2010
  20. Scordia D, Cosentino SL, Jeffries TW, Biomass Bioenerg., 59, 540, 2013
  21. Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303, 2016
  22. Akien GR, Qi L, Horvath IT, Chem. Commun., 48, 5850, 2012
  23. Mija A, van der Waal JC, Pin JM, Guigo N, de Jong E, Constr. Build. Mater., 139, 594, 2017
  24. Ya’aini N, Amin NAS, Endud S, Microporous Mesoporous Mater., 171, 14, 2013
  25. Rasmussen H, Sorensen HR, Meyer AS, Carbohydr. Res., 385, 45, 2014
  26. De S, Dutta S, Saha B, Green Chem., 13, 2859, 2011
  27. Hansen TS, Mielby J, Riisager A, Green Chem., 13, 109, 2011
  28. Hu X, Wu LP, Wang Y, Song Y, Mourant D, Gunawan R, Gholizadeh M, Li CZ, Bioresour. Technol., 133, 469, 2013
  29. Yang Y, Hu CW, Abu-Omar MM, Bioresour. Technol., 116, 190, 2012
  30. Kim DH, Lee SB, Kim SK, Park DH, Jeong GT, Bioenerg. Res., 9, 1155, 2016
  31. Kim HS, Kim SK, Jeong GT, J. Ind. Eng. Chem., 63, 48, 2018
  32. Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290, 2018
  33. Park MR, Kim SK, Jeong GT, Algal Res., 31, 116, 2018