Issue
Korean Journal of Chemical Engineering,
Vol.35, No.11, 2220-2231, 2018
An organofunctionalized MgO.SiO2 hybrid support and its performance in the immobilization of lipase from Candida rugosa
Lipase from Candida rugosa was immobilized on MgO·SiO2 hybrid grafted with amine, thiol, cyano, phenyl, epoxy and carbonyl groups. The products were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance, low-temperature N2 sorption and elemental analysis. Additionally, the degree of coverage of the oxide material surface with different functional groups and the number of surface functional groups were estimated. The Bradford method was used to determine the quantity of immobilized enzyme. The largest quantity of enzyme (25- 28 mg/g) was immobilized on the hybrid functionalized with amine and carbonyl groups. On the basis of hydrolysis reaction of p-nitrophenyl palmitate to p-nitrophenol, it was determined how the catalytic activity of the obtained biocatalysts is affected by pH, temperature, storage time, and repeated reaction cycles. The best results for catalytic activity were obtained for the lipase immobilized on MgO.SiO2 hybrids with amine and carbonyl groups. The biocatalytic system demonstrated activity above 40% in the pH range 4-10 and in the temperature range 30-70 oC. Lipase immobilized on the MgO.SiO2 systems with amine and epoxy groups retains, respectively, around 80% and 60% of its initial activity after 30 days of storage, and approximately 60-70% after 10 reaction cycles.
[References]
  1. Zucca P, Sanjust E, Molecules, 19, 14139, 2014
  2. Liu DM, Chen J, Shi YP, Trends Anal. Chem., 102, 332, 0218
  3. Tran DN, Balkus KJ, ACS Catal., 1, 956, 2011
  4. Weetall HH, Methods Enzymol., 44, 134, 1976
  5. Hartmann M, Kostrov X, Chem. Soc. Rev., 42, 6277, 2013
  6. Cao L, Carrier-bound immobilized enzymes: principles, application and design, Wiley, New York (2006).
  7. Zhou Z, Hartmann M, Top. Catal., 55, 1081, 2012
  8. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 40(6), 1451, 2007
  9. Zdarta J, Meyer AS, Jesionowski T, Pinelo M, Catalysts, 8, 92, 2018
  10. Hartmann M, Kostrov X, Chem. Soc. Rev., 42, 6277, 2013
  11. Kato K, Irimescu R, Saito T, Yokogawa Y, Takahashi H, Biosci. Biotechnol. Biochem., 67, 203, 2003
  12. Goradia D, Cooney J, Hodnett BK, Magner E, J. Mol. Catal. B-Enzym., 32, 231, 2005
  13. Forde J, Vakurov A, Gibson TD, Millner P, Whelehan M, Marison IW, O’Fagain C, J. Mol. Catal. B-Enzym., 32, 231, 2005
  14. Jesionowski T, Zdarta J, Krajewska B, Adsorption, 20, 801, 2014
  15. Zhao B, Liu XL, Jiang YJ, Zhou LY, He Y, Gao J, Appl. Biochem. Biotechnol., 173(7), 1802, 2014
  16. Wan Y, Zhao DY, Chem. Rev., 107(7), 2821, 2007
  17. Hoffman H, Cornelius M, Morell J, Froba M, Angew. Chem.-Int. Edit., 45, 3216, 2006
  18. Magner E, Chem. Soc. Rev., 42, 6213, 2013
  19. Tukel SS, Alptekin O, Process Biochem., 39(12), 2149, 2004
  20. Ozyilmaz G, Tukel SS, Alptekin O, J. Mol. Catal. B-Enzym., 35, 154, 2005
  21. Hartmann M, Jung D, J. Mater. Chem., 20, 844, 2010
  22. Hudson S, Cooney J, Magner E, Angew. Chem.-Int. Edit., 47, 8582, 2008
  23. Abdallah NH, Schlumpberger M, Gaffney DA, Hanrahan JP, Tobin JM, Magner E, J. Mol. Catal. B-Enzym., 108, 82, 2014
  24. Liu W, Wei LN, J. Mol. Catal., 30, 182, 2016
  25. Wang XY, Tian G, Jiang N, Su BL, Energy Environ. Sci., 5, 5540, 2012
  26. Xie WL, Wang JL, Energy Fuels, 28(4), 2624, 2014
  27. Chen Z, Liu L, Wu X, Yang R, RSC Adv., 6, 108583, 2016
  28. Xie W, Zang X, Food Chem., 257, 15, 2018
  29. Xie W, Zang X, Food Chem., 194, 1283, 2016
  30. Li QY, Wang PY, Zhou YL, Nie ZR, Wei Q, J. Sol-Gel Sci. Technol., 78, 523, 2016
  31. Xie WL, Huang MY, Energy Conv. Manag., 159, 42, 2018
  32. Heidanzadeh M, Doustkhah E, Rostamnia S, Rezaei PF, Harzevili FD, Zeynizadeh B, Int. J. Biol. Macromol., 101, 696, 2017
  33. Wan LS, Ke BB, Xu ZK, Enzyme Microb. Technol., 42(4), 332, 2008
  34. Xie W, Zang X, Food Chem., 227, 397, 2017
  35. Klapiszewski L, Zdarta J, Antecka K, Synoradzki K, Moszynski D, Jesionowski T, Appl. Surf. Sci., 422, 94, 2018
  36. Zdarta J, Antecka K, Jedrzak A, Synoradzki K, Luczak M, Jesionowski T, Colloids Surf. B: Biointerfaces, 169, 118, 2018
  37. Ciesielczyk F, GoscianskA J, Zdarta J, Jesionowski T, Colloids Surf. A: Physicochem. Eng. Asp., 545, 39, 2018
  38. Ambrogio MW, Thomas CR, Zhao YL, Zink JL, Stodart JF, Accounts Chem. Res., 44, 903, 2011
  39. Zhu YT, Ren XY, Liu YM, Wei Y, Qiang LS, Mater. Sci. Eng., 38, 278, 2014
  40. Lei Z, Liu X, Ma L, Liu D, Zhong H, Wang Z, RSC Adv., 5, 38665, 2015
  41. Ciesielczyk F, Krysztafkiewicz A, Jesionowski T, J. Mater. Sci., 42(11), 3831, 2007
  42. Jesionowski T, Krysztafkiewicz A, Appl. Surf. Sci., 172(1-2), 18, 2001
  43. Jesionowski T, Krysztafkiewicz A, J. Non-Cryst. Solids, 277, 45, 2000
  44. Ciesielczyk F, Nowacka M, Przybylska A, Jesionowski T, Colloids Surf. A: Physicochem. Eng. Asp., 376, 21, 2011
  45. Ciesielczyk F, Krysztafkiewicz A, Jesionowski T, Appl. Surf. Sci., 253(20), 8435, 2007
  46. Bradford MM, Anal. Biochem., 7, 248, 1976
  47. Siwinska-Stefanska K, Ciesielczyk F, Nowacka M, Jesionowski T, J. Nanomater., 2012, Article ID 316173, 19 (2012), doi:10.1155/2012/316173.
  48. Zdarta J, Salek K, Kolodziejczak-Radzimska A, Siwinska-Ste-Fanska K, et al., Open. Chem., 13, 138, 2015
  49. Ciesielczyk F, Bartczak P, Zdarta J, Jesionowski T, J. Environ. Manage., 204, 123, 2017
  50. Ma PC, Kim JK, Tang BZ, Carbon, 44, 3232, 2006
  51. Natalello A, Ami D, Brocca S, Lotti M, Doglia SM, Biochem. J., 385, 511, 2005
  52. Raghavendra T, Basak A, Manocha LM, Shah AR, Madamwar D, Bioresour. Technol., 140, 103, 2013
  53. Kołodziejczak-Radzimska A, Zdarta J, Jesionowski T, Biotechnol. Prog., 34, 767, 2018
  54. Zdarta J, Klapieszewski L, Wysokowski M, Norman M, Kolodziejczak-Radzimska A, Moszynski D, et al., Mar. Drugs, 13, 2424, 2015
  55. Banjanac K, Mihailovic M, Prlainovic N, Corovic M, Carevic M, Marinkovic A, Bezbradica D, J. Chem. Technol. Biotechnol., 91(10), 2654, 2016
  56. Liu XH, Fang YC, Yang X, Li Y, Wang CE, Chem. Eng. J., 336, 456, 2018
  57. Li K, Fan Y, He Y, Zeng L, Han X, Yan Y, Scientific Reports, 7, 1, 2017
  58. Gunathilake C, Jaroniec M, J. Mater. Chem., 4, 10914, 2016
  59. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S, Chem. Mater., 12, 3301, 2000
  60. Hong SG, Kim BC, Bin Na H, Lee J, Youn J, Chung SW, Lee CW, Lee B, Kim HS, Hsiao E, Kim SH, Kim BG, Park HG, Chang HN, Hyeon T, Dordick JS, Grate JW, Kim J, Chem. Eng. J., 322, 510, 2017
  61. Kuwahara Y, Yamanishi T, Kamegawa T, Mori K, Yamashita H, ChetCatChem, 5, 2527, 2013
  62. Khoobi M, Motevalizadeh SF, Asadgol Z, Forootanfar H, Shafiee A, Faramarzi MA, Biochem. Eng. J., 88, 131, 2014
  63. Klapiszewski L, Zdarta J, Jesionowski T, Colloids Surf. B: Biointerfaces, 162, 90, 2018
  64. Straksys A, Kochane T, Budriene S, Food Chem., 211, 294, 2016