Issue
Korean Journal of Chemical Engineering,
Vol.35, No.11, 2207-2219, 2018
Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon
Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by CoFe2O4 magnetic nanocomposite for use as a Cr(VI) adsorbent. Both AC/CoFe2O4 composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of CoFe2O4 nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and AC/CoFe2O4 composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life (t1/2) of hexavalent chromium using AC and AC/CoFe2O4 magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and AC/CoFe2O4 magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of CoFe2O4 magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36mg/L to 70mg/L.
[References]
  1. Jiang X, An QD, Xiao ZY, Zhai SR, Shi Z, Mater. Res. Bull., 102, 218, 2018
  2. Ahmadi M, Kouhgardi E, Ramavandi B, Korean J. Chem. Eng., 33(9), 2589, 2016
  3. Liu H, Wang ZM, Li HY, Wang H, Yu RB, Mater. Res. Bull., 100, 302, 2018
  4. Yu J, Jiang C, Guan Q, Ning P, Gu J, Chen Q, Zhang J, Miao R, Chemosphere, 195, 632, 2018
  5. Sakulthaew C, Chokejaroenrat C, Poapolathep A, Satapanajaru T, Poapolathep S, Chemosphere, 184, 1168, 2017
  6. Jobby R, Jha P, Yadav AK, Desai N, Chemosphere, 207, 255, 2018
  7. Zhou JG, Wang YF, Wang JT, Qiao WM, Long DH, Ling LC, J. Colloid Interface Sci., 462, 200, 2016
  8. Ranjbar N, Hashemi S, Ramavandi B, Ravanipour M, Environ. Prog. Sustain. Energy (2018), https://doi.org/10.1002/ep.12854.
  9. Basaldella EI, Vazquez PG, Iucolano F, Caputo D, J. Colloid Interface Sci., 313(2), 574, 2007
  10. Zhao YX, Yang SJ, Ding DH, Chen J, Yang YN, Lei ZF, Feng CP, Zhang ZY, J. Colloid Interface Sci., 395, 198, 2013
  11. Yu WT, Zhang LY, Wang HY, Chai LY, J. Hazard. Mater., 260, 789, 2013
  12. Wang W, Chemosphere, 190, 97, 2018
  13. Enniya I, Rghioui L, Jourani A, Sustain Chem. Pharm., 7, 9, 2018
  14. Norouzi S, Heidari M, Alipour V, Rahmanian O, Fazlzadeh M, Mohammadi-Moghadam F, Nourmoradi H, Goudarzi B, Dindarloo K, Bioresour. Technol., 258, 48, 2018
  15. Niazi L, Lashanizadegan A, Sharififard H, J. Clean Prod., 185, 554, 2018
  16. Gaikwad MS, Balomajumder C, Chemosphere, 184, 1141, 2017
  17. Senapati KK, Borgohain C, Phukan P, J. Mol. Catal. A-Chem., 339(1-2), 24, 2011
  18. Srivastava V, Kohout T, Sillanpaa M, J. Environ. Chem. Eng., 4, 2922, 2016
  19. Wan C, Li J, Carbohydr. Polym., 134, 144, 2015
  20. Glover TG, Sabo D, Vaughan LA, Rossin JA, Zhang ZJ, Langmuir, 28(13), 5695, 2012
  21. Qiu W, Yang D, Xu J, Hong B, Jin H, Jin D, Peng X, Li J, Ge H, Wang X, J. Alloy. Compd., 678, 179, 2016
  22. Darweesh TM, Ahmed MJ, Environ. Toxicol. Pharmacol., 50, 159, 2017
  23. Pathania D, Sharma A, Siddiqi ZM, J. Mol. Liq., 219, 359, 2016
  24. Gao Y, Yue QY, Gao BY, Sun YY, Wang WY, Li Q, Wang Y, Chem. Eng. J., 232, 582, 2013
  25. Ayyappan S, Mahadevan S, Chandramohan P, Srinivasan M, Philip J, Raj B, J. Phys. Chem. C, 114, 6334, 2010
  26. Rai M, Shahi G, Meena V, Meena R, Chakraborty S, Singh R, Rai B, Resource-Efficient Technol., 2, A63, 2016
  27. Zhong QQ, Yue QY, Li Q, Gao BY, Xu X, Carbohydr. Polym., 111, 788, 2014
  28. Ibrahim WM, Hassan AF, Azab YA, Egypt. J. Basic Appl. Sci., 3, 241, 2016
  29. Hassan AF, Youssef AM, Carbon Let., 15, 57, 2014
  30. Lopez-Lopez MT, Duran JDG, Delgado A, Gonzalez-Caballero F, J. Colloid Interface Sci., 291(1), 144, 2005
  31. Fu R, Liu Y, Lou Z, Wang Z, Baig SA, Xu X, J. Taiwan Inst. Chem. Eng., 62, 247, 2016
  32. Li S, Liu L, Yu Y, Wang G, Zhang H, Chen A, J. Alloy. Compd., 698, 20, 2017
  33. Foroutan R, Mohammadi R, Ramavandi B, Korean J. Chem. Eng., 35(1), 234, 2018
  34. Nithya R, Gomathi T, Sudha P, Venkatesan J, Anil S, Kim SK, Int. J. Biol. Macromol., 87, 545, 2016
  35. Foroutan R, Khoo FS, Ramavandi B, Abbasi S, Desalin. Water Treat., 82, 146, 2017
  36. Naeimi B, Foroutan R, Ahmadi B, Sadeghzadeh F, Ramavandi B, Mater. Res. Exp., 5, 045501, 2018
  37. Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC, J. Hazard. Mater., 177(1-3), 362, 2010
  38. Singh V, Sharma AK, Tripathi DN, Sanghi R, J. Hazard. Mater., 161(2-3), 955, 2009
  39. Acisli O, Khataee A, Karaca S, Sheydaei M, Ultrason. Sonochem., 31, 116, 2016
  40. Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S, J. Ind. Eng. Chem., 20(4), 2317, 2014
  41. Gheju M, Balcu I, Mosoarca G, J. Hazard. Mater., 310, 270, 2016
  42. Barnie S, Zhang J, Wang H, Yin H, Chen H, Chemosphere, 212, 209, 2018
  43. Ding Z, Wang W, Zhang Y, Li F, Liu JP, J. Alloy. Compd., 640, 362, 2015
  44. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  45. Foroutan R, Esmaeili H, Rishehri SD, Sadeghzadeh F, Mirahmadi S, Kosarifard M, Ramavandi B, Data in Brief, 12, 485, 2017
  46. Fatehi MH, Shayegan J, Zabihi M, Goodarznia I, J. Environ. Chem. Eng., 5, 1454, 2017
  47. Freundlich H, Phys. Chem., 57, 385, 1907
  48. Ramavandi B, Rahbar A, Sahebi S, Desal. Water Treat., 57, 23814, 2016
  49. Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479, 2018
  50. Rangabhashiyam S, Selvaraju N, J. Mol. Liq., 207, 39, 2015
  51. Marjanovic V, Lazarevic S, Jankovic-Castvan I, Jokic B, Janackovic D, Petrovic R, Appl. Clay Sci., 80, 202, 2013
  52. Rajput S, Pittman CU, Mohan D, J. Colloid Interface Sci., 468, 334, 2016
  53. Maleki A, Hayati B, Naghizadeh M, Joo SW, Ind. Eng. Chem. Res., 28, 211, 2015
  54. Xiao YZ, Liang HF, Wang ZC, Mater. Res. Bull., 48(10), 3910, 2013
  55. Periyasamy S, Viswanathan N, New J. Chem., 42, 3371, 2018
  56. Liu M, Wen T, Wu X, Chen C, Hu J, Li J, Wang X, Dalton Trans., 42, 14710, 2013
  57. Zhang X, Lv L, Qin YZ, Xu M, Jia XB, Chen ZH, Bioresour. Technol., 256, 1, 2018
  58. Uslu H, Datta D, Azizian S, J. Mol. Liq., 215, 449, 2016
  59. Aid A, Amokrane S, Nibou D, Mekatel E, Trari M, Hulea V, Water Sci. Technol., 77, 60, 2018
  60. Rathnayake SI, Martens WN, Xi YF, Frost RL, Ayoko GA, J. Colloid Interface Sci., 490, 163, 2017
  61. Abu-Zurayk RA, Al Bakain RZ, Hamadneh I, Al-Dujaili AH, Int. J. Miner. Process., 140, 79, 2015
  62. Kumar R, Kim SJ, Kim KH, Lee SH, Park HS, Jeon BH, Appl. Geochem., 88, 113, 2018
  63. Maneechakr P, Karnjanakom S, J. Chem. Thermodyn., 106, 104, 2017
  64. Yang J, Yu M, Chen W, Ind. Eng. Chem. Res., 21, 414, 2015