Issue
Korean Journal of Chemical Engineering,
Vol.35, No.11, 2191-2197, 2018
Sorption-enhanced reforming of tar: Influence of the preparation method of CO2 absorbent
To remove tar and produce environment-friendly H2, one of the promising routes is the sorption-enhanced steam reforming (SESR) process, in which the CO2 sorbent is a key element. We prepared the CO2 sorbents with Ca12Al14O33 as carrier with various methods. Their characterizations were examined, and the sample prepared by solgel (SG) method showed the strongest CaO and Ca12Al14O33 phases and the most excellent pore structure among all the samples. Then, a thermogravimetric experiment was conducted, and the results showed that the sample prepared by sol-gel (SG) method had the best CO2 adsorption capacity and excellent long-term cyclic stability. Finally, the sorbent was used into the steam reforming experiments of tar. Under the action of the sorbent, the reforming reaction was enhanced in-situ, with the H2 yield and concentration improved obviously, and especially, H2 concentration can reach over 98.85%.
[References]
  1. Gao NB, Liu S, Han Y, Xing C, Li AM, Int. J. Hydrog. Energy, 40(25), 7983, 2015
  2. Quitete CPB, Bittencourt RCP, Souza MMVM, Appl. Catal. A: Gen., 478, 234, 2014
  3. Yang J, Wang XG, Li L, Shen K, Lu XG, Ding WZ, Appl. Catal. B: Environ., 96(1-2), 232, 2010
  4. Xie HQ, Yu QB, Zhang JR, Liu JL, Zuo ZL, Liu JL, Qin Q, Environ. Prog. Sust. Energy, 36, 729, 2017
  5. Xie HQ, Yu QB, Zuo ZL, Zhang JR, Han ZC, Qin Q, J. Therm. Anal. Calorim., 126, 1621, 2016
  6. Yue BH, Wang XG, Ai XP, Yang J, Li L, Lu XG, Ding WZ, Fuel Process. Technol., 91(9), 1098, 2010
  7. Colby JL, Wang T, Schmidt LD, Energy Fuels, 24, 1341, 2010
  8. Zhang RQ, Wang YC, Brown RC, Energy Conv. Manag., 48(1), 68, 2007
  9. Xie HQ, Zhang JR, Yu QB, Zuo ZL, Liu JL, Qin Q, Energy Fuels, 30(3), 2336, 2016
  10. Li CS, Hirabayashi D, Suzuki K, Fuel Process. Technol., 90(6), 790, 2009
  11. Furusawa T, Tsutsumi A, Appl. Catal. A: Gen., 278(2), 195, 2005
  12. Swierczynski D, Courson C, Kiennemann A, Chem. Eng. Process., 47(3), 508, 2008
  13. Widayatno WB, Guan GQ, Rizkiana J, Hao XG, Wang ZD, Samart C, Abudula A, Fuel, 132, 204, 2014
  14. Yang J, Wang XG, Li L, Shen K, Lu XG, Ding WZ, Chem. J. Chinese Univ., 31, 1841, 2010
  15. Xie HQ, Yu QB, Zuo ZL, Han ZC, Yao X, Qin Q, Int. J. Hydrog. Energy, 41, 2345, 2010
  16. Yang Z, Zhang Y, Ding W, Zhang Y, Shen P, Zhou Y, Liu Y, Huang S, Lu X, J. Nat. Gas Chem., 18, 407, 2009
  17. Xie HQ, Yu QB, Yao X, Duan WJ, Zuo ZL, Qin Q, J. Energy Chem., 24, 299, 2015
  18. Li CS, Hirabayashi D, Suzuki K, Appl. Catal. B: Environ., 88(3-4), 351, 2009
  19. Dou BL, Wang C, Song YC, Chen HS, Jiang B, Yang MJ, Xu YJ, Renew. Sust. Energ. Rev., 53, 536, 2016
  20. Ortiz AL, Harrison DP, Ind. Eng. Chem. Res., 40(23), 5102, 2001
  21. Martavaltzi CS, Lemonidou AA, Microporous Mesoporous Mater., 110, 119, 2008
  22. Kinoshita CM, Turn SQ, Int. J. Hydrog. Energy, 28(10), 1065, 2003
  23. Xie HQ, Yu QB, Wei MQ, Duan WJ, Yao X, Qin Q, Zuo ZL, Int. J. Hydrog. Energy, 40, 142, 2015
  24. Xie HQ, Yu QB, Lu H, Zhang YY, Zhang JR, Qin Q, Int. J. Hydrog. Energy, 42, 28718, 2017
  25. Zamboni I, Courson C, Kiennemann A, Catal. Today, 176(1), 197, 2011
  26. Blamey J, Anthony EJ, Wang J, Fennell PS, Prog. Energy Combust. Sci., 36(2), 260, 2010
  27. Xie MM, Zhou ZM, Qi Y, Cheng ZM, Yuan WK, Chem. Eng. J., 207-208, 142, 2012
  28. Zhou ZM, Qi Y, Xie MM, Cheng ZM, Yuan WK, Chem. Eng. Sci., 74, 172, 2012
  29. Martavaltzi CS, Lemionidou AA, Ind. Eng. Chem. Res., 47(23), 9537, 2008
  30. Vagia EC, Lemonidou AA, Appl. Catal. A: Gen., 351(1), 111, 2008
  31. Chen F, Hong YR, Sun JL, Bu JL, J. Univ. Sci. Technol. Beijing, 13, 82, 2006
  32. Li ZS, Cai NS, Huang YY, Han HJ, Energy Fuels, 9, 1447, 2005
  33. Gong L, Lin Z, Ning S, Sun J, Shen J, Torimoto Y, Li Q, Mater. Lett., 64, 1322, 2010
  34. Zamboni I, Courson C, Kiennemann A, Catal. Today, 176(1), 197, 2011