Issue
Korean Journal of Chemical Engineering,
Vol.35, No.11, 2172-2184, 2018
Effect of H2O2 modification of H3PW12O40@carbon for m-xylene oxidation
The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by H3PW12O40 (HPW) loaded on carbon and cobalt. We used H2O2 solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at 700 °C for 4 h after being impregnated in the 3.75% H2O2 solution at 40 °C for 7 h. The surface characterization displays that the H2O2 modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.
[References]
  1. Suresh AK, Sharma MM, Sridhar T, Ind. Eng. Chem. Res., 39, 3958, 2008
  2. Xu CX, Yang KD, Liu ZL, Qin ZZ, He W, Dai QW, Zhang JJ, Zhang F, Chinese J. Chem. Eng., 22, 305, 2014
  3. Lv HF, Wu SQ, Liu N, Long XL, Yuan WK, Chem. Eng. J., 172(2-3), 1045, 2011
  4. Long XL, Wang ZH, Wu SQ, Wu SM, Lv HF, Yuan WK, J. Ind. Eng. Chem., 20(1), 100, 2014
  5. Hao XL, Zhang XW, Lei LC, Carbon, 47, 153, 2009
  6. Vega E, Lemus J, Anfruns A, Gonzalez-Olmos R, Palomar J, Martin MJ, J. Hazard. Mater., 258-259, 77, 2013
  7. Liu WF, Zhang J, Cheng C, Tian GP, Zhang CL, Chem. Eng. J., 175, 24, 2011
  8. Kusmierek K, Swiatkowski A, Skrzypczynska K, Blazewicz S, Hryniewicz J, Korean J. Chem. Eng., 34(4), 1081, 2017
  9. Guo Q, Jing W, Cheng S, Huang Z, Sun D, Hou Y, Han X, Korean J. Chem. Eng., 32(11), 2257, 2015
  10. Park H, Yeom DH, Kim J, Lee JK, Korean J. Chem. Eng., 32(1), 178, 2015
  11. Liu Q, Ke M, Yu P, Liu F, Hu H, Li C, Korean J. Chem. Eng., 35(1), 137, 2018
  12. Wang ZH, Yang ZL, Wu SM, Long XL, Int. J. Chem. Reactor Eng., 13, 413, 2015
  13. Chen CJ, Li X, Tong ZF, Li Y, Li MF, Appl. Surf. Sci., 315, 203, 2014
  14. Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS, Chem. Eng. J., 200-202, 673, 2012
  15. Song XL, Liu HY, Cheng L, Qu YX, Desalination, 255(1-3), 78, 2010
  16. Boehm HP, Carbon, 32, 759, 1994
  17. Biniak S, Szymanski G, Siedlewski J, Swiatkowski A, Carbon, 35, 1799, 1997
  18. Ladera RM, Ojeda M, Fierro JLG, Rojas S, Catal. Sci. Technol., 5, 484, 2014
  19. Alharbi W, Kozhevnikova EF, Kozhevnikov IV, Acs Catal., 5, 7186, 2015
  20. Voncina DB, Majcen-Le-Marechal A, Dyes Pigment., 59, 173, 2003
  21. Domingo-Garcia M, Garzon FJL, Perez-Mendoza MJ, J. Colloid Interface Sci., 248(1), 116, 2002
  22. Song XL, Liu HY, Cheng L, Qu YX, Desalination, 255(1-3), 78, 2010
  23. Moreno-Castilla C, Lopez-Ramon MV, Carrasco-Marin F, Carbon, 38, 1995, 2000
  24. Moreno-Castilla C, Carrasco-Marin F, Maldonado-Hodar FJ, Rivera-Utrilla J, Carbon, 36, 145, 1998
  25. Vinke P, van der Eijk M, Verbree M, Voskamp AF, van Bekkum H, Carbon, 32, 675, 1994
  26. Gomez-Serrano V, Acedo-Ramos M, Lopez-Peinado AJ, Valenzuela-Calahorro C, Fuel, 73, 387, 1994
  27. Zielke U, Huttinger KJ, Hoffman WP, Carbon, 34, 983, 1996
  28. Liu ZG, Cao S, Wang S, Zeng W, Zhang TS, Li PF, Lei FH, J. Chem. Eng. Jpn., 48(1), 29, 2015
  29. Prado RG, Bianchi ML, Mota EGD, Brum SS, Lopes JH, Silva MJD, Waste Biomass Valorization, 8, 1, 2017
  30. Badday AS, Abdullah AZ, Lee KT, Renewable Energy, 62, 10, 2014
  31. Zhi Y, Liu J, Chemosphere, 144, 1224, 2016
  32. Luo JJ, Lu JJ, Niu Q, Chen XB, Wang ZY, Zhang JR, Fuel, 160, 440, 2015
  33. Guedidi H, Reinert L, Soneda Y, Bellakhal N, Duclaux L, Arabian J. Chem., 304, A3584, 2014