Issue
Korean Journal of Chemical Engineering,
Vol.35, No.11, 2164-2171, 2018
Evaluation of the cavitation effect on liquid fuel atomization by numerical simulation
Heavy duty diesel vehicles deteriorate urban air quality by discharging a large volume of air pollutants such as soot and nitrogen oxides. In this study, a newly introduced auxiliary device a fuel activation device (FAD) to improve the combustion efficiency of internal engines by utilizing the cavitation effect was closely investigated by the fluid flow mechanism via a numerical analysis method. As a result, the FAD contributed to fuel atomization from the injection nozzle at lower inlet pressure by reducing the pressure energy. The improved cavitation effect facilitated fuel atomization, and ultimately reduced pollutant emission due to the decrease in fuel consumption. The axial velocity along the flow channel was increased 8.7 times with the aid of FAD, which improved the primary break-up of bubbles. The FAD cavitation effect produced 1.09-times larger turbulent bubbles under the same pressure and fuel injection amount than without FAD.
[References]
  1. Suh HK, Lee CS, Renew. Sust. Energ. Rev., 58, 1601, 2016
  2. Kim HJ, MA dissertation, Kyung Hee University, Korea (1997).
  3. IARC, Diesel Engine Exhaust Carcinogenic, International Agency of Research on Cancer (2012).
  4. Choi SI, Feng JP, Seo HS, Kim SB, Jo YM, J. Korean Soc. Atmos. Environ., 33(4), 306, 2017
  5. Lee YS, MA dissertation, Kyung Hee University, Korea (2006).
  6. Park DS, Lee TJ, Lee YI, Jeong WS, Kwon SB, Kim DS, Lee KY, Sci. Total Environ., 575, 97, 2017
  7. Ghods S, Arizona State University, ProQuest Dissertations Publishing, 3567676 (2013).
  8. He Z, Tao X, Zhong W, Leng X, Wang Q, Zhao P, Int. Commun. Heat Mass Transf., 65, 117, 2015
  9. Yin B, Yu S, Jia H, Yu J, Int. J. Heat Fluid Flow, 59, 1, 2016
  10. Payri R, Salvador FJ, Gimeno J, Venegas O, Exp. Therm. Fluid Sci., 44, 235, 2013
  11. Egerer CP, Stefan H, Steffen JS, Nikolaus AA, Phys. Fluids, 26, 085102, 2014
  12. Sou A, Bicer B, Tomiyama A, Comput. Fluids, 103, 42, 2014
  13. Yu SH, Yin BF, Jia HK, Wen S, Li XF, Yu JD, Fuel, 208, 20, 2017
  14. Apte SV, Gorokhovski M, Moin P, Int. J. Multiph. Flow, 29(9), 1503, 2003
  15. Yuan W, Sauer J, Schnerr GH, Mec. Ind., 2(5), 383, 2001
  16. He Z, Yuhang C, Xianyin L, Qian W, Genmiao G, Int. Commun. Heat Mass Transf., 76, 108, 2016
  17. Park S, Woo S, Kim H, Lee K, Appl. Energy, 176, 209, 2016
  18. Salvadora FJ, Romero JV, Rosello MD, Jaramillo D, J. Comput. Appl. Mathematics, 291, 94, 2016
  19. Mohan B, Yang WM, Chou SK, Energy Conv. Manag., 77, 269, 2014
  20. Ghiji M, Goldsworthy L, Brandner PA, Garaniya V, Hield P, Fuel, 175, 274, 2016
  21. Sou A, Hosokawa S, Tomiyama A, Int. J. Heat Mass Transf., 50(17-18), 3575, 2007
  22. Pyszczek R, Kapusta LJ, Teodorczyk A, J. Power Technol., 97(1), 52, 2017
  23. He Z, Shao Z, Wang Q, Zhong W, Tao X, Exp. Therm. Fluid Sci., 60, 252, 2015
  24. Lefebvre AH, Taylor Francis, New York (1989).
  25. Baumgarten C, Stegemann J, Marker GP, Proc. of 18th ILASS Europe Conference, Zaragoza, Spain, 15 (2002).
  26. Payri F, Payri R, Salvador FJ, Martinez-Lopez J, Comput. Fluids, 58, 88, 2012
  27. Bergwerk W, Proc. Institute Mechanical Engineers, 173(25), 655, 1959
  28. Soteriou C, Andrews R, Smith M, SAE Paper, Paper No. 950080 (1995).
  29. Nurick WH, Trans. ASME, 98(4), 681, 1976
  30. Payri F, Bermudez V, Payri R, Salvador FJ, Fuel, 83(4-5), 419, 2004
  31. Hiroyasu H, Arai M, Shimizu M, Proceedings of International Conference on Liquid Atomization and Spray Systems, 91(ICLASS91), 275 (1991).
  32. Qiu T, Song X, Lei Y, Liu X, An X, Lai M, Appl. Therm. Eng., 109, 364, 206
  33. Zhandi A, Sohrabi S, Shams M, Int. J. Automotive Eng., 5, 940, 2015
  34. Som S, Aggarwal SK, El-Hannouny EM, Longman DE, J. Eng. Gas Turbines Power, 132(4), 042802, 2010
  35. Molina S, Salvador FJ, Carreres M, Jaramillo D, Energy Conv. Manag., 79, 114, 2014
  36. Sun ZY, Li GX, Chen C, Yu YS, Gao GX, Energy Conv. Manag., 89, 843, 2015
  37. Wang F, He Z, Liu J, Wang Q, Int. J. Automotive Technol., 16(4), 539, 2015
  38. Gavaises M, Andriotis A, Papoulias D, Theodorakakos A, Phys. Fluids, 21, 052107, 2017
  39. Feng JP, Choi SI, Seo HS, Jo YM, Korean J. Chem. Eng. (2018), DOI:10.1007/s11814-018-0106-9.