Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2127-2132, 2018
Photo-synthesized copper phenylacetylide nanobelts with preferential photocatalytic active facet exposure
We recently reported that PhC2Cu nanobelt exhibits excellent photocatalytic degradation of organic pollutants and activation of molecular O2. However, there has been no further research about the relationship between its crystal structure and photocatalytic activity. Herein, a new safe and energy-save method, photo-synthesis, to prepare PhC2Cu nanobelts with preferential active exposure facet was developed. It was used to study the relationship between its crystal structure and photocatalytic activity, compared to the PhC2Cu nanobelts prepared by thermal-synthesis method. The prepared samples were characterized by X-ray powder diffractometer (XRD), field-emission scanning electron microscopy (FE-SEM), ultraviolet-visible (UV-vis) absorbance spectra and diffuse reflectance spectra (UV-vis Abs and DRS), N2 adsorption-desorption isotherms, FT-IR and Raman spectra. The degradation of MB experiments under visible light irradiation shows that the photocatalytic activity of PhC2Cu prepared by photo-synthesis method is much higher than that by traditional thermal-synthesis method. Moreover, the photocatalytic mechanism of PhC2Cu nanobelts was further studied by the photocatalytic generation of O2 - · and .OH.
[References]
  1. Chen C, Ma W, Zhao J, Chem. Soc. Rev., 39, 4206, 2010
  2. Ghosh S, Kouame NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert PH, Remita H, Nat. Mater., 14(5), 505, 2015
  3. Wang JL, Wang C, Lin W, ACS Catal., 2, 2630, 2012
  4. Wang C, Xie ZG, deKrafft KE, Lin WL, J. Am. Chem. Soc., 133(34), 13445, 2011
  5. Gao J, Miao J, Li PZ, Teng WY, Yang L, Zhao Y, Liu B, Zhang Q, Chem. Commun., 50, 3786, 2014
  6. Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z, Angew. Chem.-Int. Edit., 51, 3364, 2012
  7. Das MC, Xu H, Wang Z, Srinivas G, Zhou W, Yue YF, Nesterov VN, Qian G, Chen B, Chem. Commun., 47, 11715, 2011
  8. Cook TR, Zheng YR, Stang PJ, Chem. Rev., 113(1), 734, 2013
  9. Dias EM, Petit C, J. Mater. Chem. A, 3, 22484, 2015
  10. Li JYJ, Liu YY, Ma JF, Chem. Eur. J., 21, 4413, 2015
  11. Wu B, Zhang WH, Rena ZG, Lang JP, Chem. Commun., 51, 14893, 2015
  12. Wang F, Li FL, Xu MM, Yu H, Zhang JG, Xia HT, Lang JP, J. Mater. Chem. A, 3, 5908, 2015
  13. Wang XL, Luan J, Sui FF, Lin HY, Liu GC, Xu C, Cryst. Growth Des., 13, 3561, 2013
  14. Zhang H, Liu G, Shi L, Liu H, Wang T, Ye J, Nano Energy, 22, 149, 2016
  15. Plyusnin VF, Kolomeets AV, Grivin VP, Larionov SV, Lemmetyinen H, J. Phys. Chem. A, 115(10), 1763, 2011
  16. Smith CS, Mann KR, J. Am. Chem. Soc., 134(21), 8786, 2012
  17. Zhang T, Lin W, Chem. Soc. Rev., 43, 5982, 2014
  18. Moga TG, Nat. Chem, 4, 334, 2012
  19. Li G, Dimitrijevic NM, Chen L, Rajh T, Gray KA, J. Phys. Chem. C, 112, 19040, 2008
  20. Nishikawa M, Fukuda M, Nakabayashi Y, Saito N, Ogawa N, Nakajima T, Shinoda K, Tsuchiya T, Nosaka Y, Appl. Surf. Sci., 363, 173, 2016
  21. Jiang HY, Zhou P, Wang YY, Duan R, Chen CC, Song WJ, Zhao JC, Adv. Mater., 28(44), 9776, 2016
  22. Li Y, Xu J, Chao J, Chen D, Ouyang S, Ye J, Shen G, J. Mater. Chem., 21, 12852, 2011
  23. Cheng K, Sun W, Jiang HY, Liu J, Lin J, J. Phys. Chem. C, 117, 14600, 2013
  24. Goto H, Hanada Y, Ohno T, Matsumura M, J. Catal., 225(1), 223, 2004
  25. Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T, J. Am. Chem. Soc., 125(42), 12803, 2003
  26. Liu G, Wang T, Ouyang S, Liu L, Jiang H, Yu Q, Kako T, Ye J, J. Mater. Chem. A, 3, 8123, 2015
  27. Chui SSY, Ng MFY, Che CM, Chem. Eur. J., 11, 1739, 2005
  28. Hu J, Li H, Huang C, Liu M, Qiu X, Appl. Catal. B: Environ., 142-143, 598, 2013
  29. Jiang HY, Liu G, Li M, Liu JJ, Sun WB, Ye JH, Lin J, Appl. Catal. B: Environ., 163, 267, 2015
  30. Kruk M, Jaroniec M, Chem. Mater., 13, 3169, 2001
  31. Jiang HY, Liu J, Cheng K, Sun W, Lin J, J. Phys, Chem. C, 117, 20029, 2013