Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2097-2116, 2018
A comprehensive comparison among four different approaches for predicting the solubility of pharmaceutical solid compounds in supercritical carbon dioxide
Supercritical technologies have been developed in the food, environmental, biochemical and pharmaceutical product processing during the recent decades. Obtaining accurate experimental solubilities of pharmaceutical compounds in supercritical carbon dioxide (SC-CO2) and their correlations are highly important and essential for the design of industrial operating units. In this study, the solubilities of six pharmaceutical compounds (Anti-HIV, Antiinflammatory and Anti-cancer) in SC-CO2 were correlated using four different models: cubic equation of state (EoS) model (SRK and modified-Pazuki EoSs), empirical and semi-empirical models (Chrastil, Mendez-Santiago-Teja, Spark et al. and Bian et al. models), regular solution model coupled with the Flory-Huggins equation, and an artificial neural network-based (ANN-based) model. In EoS calculations, twin-parametric van der Waals (vdW2) and Panagiotopoulos- Reid (mrPR) mixing rules were used for estimating the supercritical solution properties, with three different sets employed for obtaining critical and physicochemical properties of the solid compounds. To evaluate the capabilities of various approaches, a comprehensive comparison was carried out among the four models based on several statistical criteria, including AARD, Radj and F-value. Results of the analysis of variance (ANOVA) indicated that the ANN-based model provided the best results in terms of correlating the experimental solubility of the pharmaceutical compounds in SC-CO2.
[References]
  1. Tabaraki R, Toulabi A, Fluid Phase Equilib., 383, 108, 2014
  2. Tabernero A, del Valle EMM, Galan MA, J. Supercrit. Fluids, 52(2), 161, 2010
  3. Lyu J, Yang H, Ling W, Nie L, Yue G, Li R, Chen Y, Wang S, Frontiers in Energy (2017). https://doi.org/10.1007/s11708-017-0512-4.
  4. Sodeifian G, Sajadian SA, Ardestani NS, J. Supercrit. Fluids, 116, 46, 2016
  5. Sodeifian G, Sajadian SA, Ardestani NS, J. Supercrit. Fluids, 119, 139, 2017
  6. Sodeifian G, Sajadian SA, Daneshyan S, J. Supercrit. Fluids, 140, 72, 2018
  7. Sodeifian G, Sajadian SA, J. Supercrit. Fluids, 133, 239, 2018
  8. Brunner G, J. Supercrit. Fluids, 96, 11, 2015
  9. Kiran E, J. Supercrit. Fluids, 110, 126, 2016
  10. Tom JW, Debenedetti PG, J. Aerosol Sci., 22, 555, 1991
  11. Yeo SD, Kiran E, J. Supercrit. Fluids, 34(3), 287, 2005
  12. Yeoh HS, Chong GH, Azahan NM, Rahman RA, Choong TSY, Eng. J., 17, 67, 2013
  13. Sodeifian G, Ardestani NS, Sajadian SA, Panah HS, Fluid Phase Equilib., 458, 102, 2018
  14. Sodeifian G, Sajadian SA, Ardestani NS, J. Supercrit. Fluids, 107, 137, 2016
  15. Sodeifian G, Sajadian SA, Ardestani NS, J. Supercrit. Fluids, 127, 146, 2017
  16. Fang Z, Rapid production of micro-and nano-particles using supercritical water, Springer Science & Business Media (2010).
  17. Sodeifian G, Ardestani NS, Sajadian SA, Ghorbandoost S, J. Supercrit. Fluids, 114, 55, 2016
  18. Williams JR, Clifford T, Supercritical fluid methods and protocols, Springer Science & Business Media (2000).
  19. Sodeifian G, Ghorbandoost S, Sajadian SA, Ardestani NS, J. Supercrit. Fluids, 110, 265, 2016
  20. Sodeifian G, Sajadian SA, J. Supercrit. Fluids, 121, 52, 2017
  21. Coimbra P, Duarte CMM, de Sousa HC, Fluid Phase Equilib., 239(2), 188, 2006
  22. Cheng JS, Tang M, Chen YP, Fluid Phase Equilib., 194, 483, 2002
  23. Huang CY, Lee LS, Su CS, J. Taiwan Inst. Chem. Engineers, 44, 349, 2013
  24. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59, 1976
  25. Soave G, Fluid Phase Equilib., 84, 339, 1993
  26. Valderrama JO, J. Chem. Eng. Jpn., 23, 87, 1990
  27. Dashtizadeh A, Pazuki GR, Taghikhani V, Ghotbi C, Fluid Phase Equilib., 242(1), 19, 2006
  28. Chrastil J, J. Phys. Chem., 86, 3016, 1982
  29. Del Valle JM, Aguilera JM, Ind. Eng. Chem. Res., 27, 1551, 1988
  30. Gordillo MD, Blanco MA, Molero A, de la Ossa EM, J. Supercrit. Fluids, 15(3), 183, 1999
  31. Jouyban A, Chan HK, Foster NR, J. Supercrit. Fluids, 24(1), 19, 2002
  32. Jouyban A, Rehman M, Shekunov BY, Chan HK, Clark BJ, York P, J. Pharm. Sci., 91, 1287, 2002
  33. Bian XQ, Zhang Q, Du ZM, Chen J, Jaubert JN, Fluid Phase Equilib., 411, 74, 2016
  34. Mendez-Santiago J, Teja AS, Fluid Phase Equilib., 158, 501, 1999
  35. Sparks DL, Estevez LA, Hernandez R, Barlow K, French T, J. Chem. Eng. Data, 53(2), 407, 2008
  36. Su CS, Chen YP, Fluid Phase Equilib., 254(1-2), 167, 2007
  37. Su CS, Chen YP, J. Supercrit. Fluids, 43(3), 438, 2008
  38. Eslamimanesh A, Gharagheizi F, Mohammadi AH, Richon D, Chem. Eng. Sci., 66(13), 3039, 2011
  39. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D, Ind. Eng. Chem. Res., 50, 221, 2010
  40. Mehdizadeh B, Movagharnejad K, Fluid Phase Equilib., 303(1), 40, 2011
  41. Vaferi B, Karimi M, Azizi M, Esmaeili H, J. Supercrit. Fluids, 77, 44, 2013
  42. Bakhbakhi Y, Mathematical Computer Modelling, 55, 1932, 2012
  43. Sodeifian G, Sajadian SA, Razmimanesh F, Fluid Phase Equilib., 450, 149, 2017
  44. Sodeifian G, Razmimanesh F, Sajadian SA, Panah HS, Fluid Phase Equilib., 472, 147, 2018
  45. Ardjmand M, Mirzajanzadeh M, Zabihi F, Chinese J. Chem. Eng., 22, 549, 2014
  46. Yalkowsky SH, Ind. Eng. Chem. Fundam., 18, 108, 1979
  47. Pang T, McLaughlin E, Ind. Eng. Chem. Process Des. Dev., 24, 1027, 1985
  48. Huang FH, Li MH, Lee LL, Starling KE, Chung FT, J. Chem. Eng. Jpn., 18, 490, 1985
  49. Fedors RF, Polym. Eng. Sci., 14, 147, 1974
  50. Ghoreishi SM, Heidari E, J. Supercrit. Fluids, 74, 128, 2013
  51. Lashkarbolooki M, Vaferi B, Rahimpour MR, Fluid Phase Equilib., 308(1-2), 35, 2011
  52. Sodeifian G, Sajadian SA, Ardestani NS, J. Taiwan Inst. Chem. Engineers, 60, 165, 2016
  53. Garlapati C, Madras G, Thermochim. Acta, 500(1-2), 123, 2010
  54. Sodeifian G, Haghtalab A, Appl. Rheol., 14, 180, 2004
  55. Haghtalab A, Sodeifian G, Iran. Polym. J., 11, 107, 2002
  56. Montgomery DC, Design and analysis of experiments, John Wiley & Sons (2008).
  57. Adachi Y, Lu BCY, Fluid Phase Equilib., 14, 147, 1983
  58. Suleiman D, Estevez LA, Pulido JC, Garcia JE, Mojica C, J. Chem. Eng. Data, 50(4), 1234, 2005
  59. Ch R, Madras G, Thermochim. Acta, 507, 99, 2010
  60. Hezave AZ, Aftab S, Esmaeilzadeh F, J. Supercrit. Fluids, 68, 39, 2012
  61. Yamini Y, Hojjati M, Kalantarian P, Moradi M, Esrafili A, Vatanara A, Thermochim. Acta, 549, 95, 2012
  62. Poling BE, Prausnitz JM, Paul OCJ, Reid RC, The properties of gases and liquids, McGraw-Hill New York (2001).
  63. Curl R, Pitzer K, Ind. Eng. Chem., 50, 265, 1958
  64. Lee BI, Kesler MG, AIChE J., 21, 510, 1975