Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2086-2096, 2018
Comparison study of naphthalene adsorption on activated carbons prepared from different raws
Five activated carbons (ACs) from apricot shells (ACAS), mixture of lignin and cellulose (ACLC), wood (ACW), walnut shells (ACWS), and coal (CAC) were prepared and used as adsorbents to study the adsorption behavior of naphthalene. All ACs were characterized by scanning electron microscopy, N2 adsorption-desorption method, Xrayphotoelectron spectroscopy, and elemental analysis. The effects of initial concentration, contact time, ionic strength, pH, and temperature on the adsorption of ACs for naphthalene were examined. Results show that CAC exhibit higher micropore specific surface area and contain more C-O bond than other ACs. Except for ACW, CAC is the least polar or the most hydrophobic adsorbent among ACs. This finding may be helpful in the formation of hydrogen bonding between CAC and naphthalene. The adsorption quantity of CAC was 227.03mg g-1 at 303 K, which was considerably higher compared with that of other ACs. The kinetics process of naphthalene on all ACs was controlled by pseudo-second- order kinetic model. The adsorption equilibrium of naphthalene on ACs was reached at 40min. The adsorption isotherms of naphthalene to ACs were consistent with the Freundlich isotherm model. The result of thermodynamic analysis shows that the adsorption occurs spontaneously. Moreover, the higher starting naphthalene concentration and lower adsorption temperature significantly can enhance the adsorption capacity of CAC. The maximum adsorption value of naphthalene on ACs was also observed at pH 4 under the same conditions. Moreover, the increase in ionic strength slightly promotes the adsorption of naphthalene on ACs. The microporous structure, element content and surface functional group of ACs affect its adsorption capacity.
[References]
  1. Li N, Cheng W, Pan Y, J. Environ. Prot. Ecol., 8, 416, 2017
  2. Ge XY, Tian F, Wu ZL, Yan YJ, Cravotto G, Wu ZS, Chem. Eng. Process., 91, 67, 2015
  3. Sun Z, Wu Z, Liu D, He X, Korean J. Chem. Eng., 35(2), 557, 2018
  4. Cai SS, Syage JA, Hanold KA, Balogh MP, Anal. Chem., 81, 2123, 2009
  5. Cabal B, Budinova T, Ania CO, Tsyntsarski B, Parra JB, Petrova B, J. Hazard. Mater., 161(2-3), 1150, 2009
  6. Gan S, Lau EV, Ng HK, J. Hazard. Mater., 172(2-3), 532, 2009
  7. Regti A, Laamari MR, Stiriba SE, Haddad ME, Microchem J., 130, 129, 2017
  8. Aljeboree AM, Alshirifi AN, Alkaim AF, Arab. J. Chem., 150, S3381, 2014
  9. Mahmood T, Ali R, Naeem A, Hamayun M, Aslam M, Process Saf. Environ. Protect., 109, 548, 2017
  10. Marzbali MH, Esmaieli M, Abolghasemi H, Marzbali MH, Process Saf. Environ. Protect., 102, 700, 2016
  11. Mussatto SI, Fernandes M, Rocha GJM, Orfao JJM, Teixeira JA, Roberto IC, Bioresour. Technol., 101(7), 2450, 2010
  12. Foo KY, Hameed BH, Bioresour. Technol., 111, 425, 2012
  13. Nazari G, Abolghasemi H, Esmaieli M, Pouya ES, Appl. Surf. Sci., 375, 144, 2016
  14. Xiao H, Peng H, Deng SH, Yang XY, Zhang YZ, Li YW, Bioresour. Technol., 111, 127, 2012
  15. Yeganeh MM, Kaghazchi T, Soleimani M, Chem. Eng. Technol., 29(10), 1247, 2006
  16. Canellas J, Femenia A, Rossello C, Soler L, J. Sci. Food Agric., 59, 269, 1992
  17. Fan L, Chen J, Guo J, Jiang X, Jiang W, J. Anal. Appl. Pyrolysis, 104, 353, 2013
  18. Nazari G, Abolghasemi H, Esmaieli M, Assar M, Water Treat., 57, 27339, 2016
  19. Thue PS, dos Reis GS, Lima EC, Sieliechi JM, Dotto SL, Wamba AGN, Dias SLP, Pavan FA, Res. Chem. Intermediat., 43, 1, 2016
  20. Asadullah M, Jahan I, Ahmed MB, Adawiyah P, Malek NH, Rahman MS, Ind. Eng. Chem. Res., 20, 887, 2014
  21. Yu HR, Cho S, Jung MJ, Lee YS, Microporous Mesoporous Mater., 172, 131, 2013
  22. Yang W, Wang Y, Sharma P, Li B, Liu K, Colloids Surf. A: Physicochem. Eng. Asp., 530, 146, 2017
  23. Liu Q, Zheng T, Wang P, Guo L, Ind. Crop. Prod., 31, 233, 2010
  24. Wei XH, Wu ZS, Wu ZL, Ye BC, Powder Technol., 329, 207, 2018
  25. Chen B, Zhou D, Zhu L, Environ. Sci. Technol., 42, 5137, 2008
  26. Elhafez SE, Hamad HA, Zaatout AA, Malash GF, Environ. Sci. Pollut. Res. Int., 24, 1, 2017
  27. Ho YS, J. Hazard. Mater., 136(3), 681, 2006
  28. Dowaidar AM, EI-Shahawi MS, Ashour I, Sci. Technol., 42, 3609, 2007
  29. Ramachandran P, Vairamuthu R, Ponnusamy S, J. Eng. Appl. Sci., 6, 15, 2011
  30. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 164(2-3), 473, 2009
  31. Tan IAW, Chan JC, Hameed BH, Lim LLP, J. Water Process Eng., 14, 60, 2016
  32. Zhu M, Yao J, Dong L, Sun J, Chemosphere, 144, 1645, 2016
  33. Ghaedi M, Daneshyar A, Asfaram A, Purkait MK, Rsc. Adv., 6, 54322, 2016
  34. Valderrama C, Gamisans X, de las Heras X, Farran A, Cortina JL, J. Hazard. Mater., 157(2-3), 386, 2008
  35. Prajapati YN, Bhaduri B, Joshi HC, Srivastava A, Verma N, Chemosphere, 155, 62, 2016
  36. Radwan EK, Hany H, Ghafar A, Moursy AS, Langford CH, Bedair AH, Achari G, Environ. Sci. Pollut. Res., 22, 12035, 2015
  37. Yang X, Li J, Wen T, Ren X, Huang Y, Wang X, Colloids Surf. A: Physicochem. Eng. Asp., 422, 1, 2013
  38. Zhou Y, Lu P, Lu J, Carbohydr. Polym., 88, 502, 2012
  39. Zhu M, Tian W, Chai H, Yao J, Korean J. Chem. Eng., 34(4), 1073, 2017