Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2036-2042, 2018
Nanoliter scale microloop reactor with rapid mixing ability for biochemical reaction
The mixing rate is a crucial factor in determining the reaction rate and product distribution in reactors for academic and industrial application. Especially, in pharmaceutical or dangerous chemistry, it is essential to create rapidly homogeneous mixture under the control of a small volume of precious sample. In this study, we propose a microloop reactor that is capable of rapid mixing for homogeneous reaction by utilizing programmable actuated microvalves (PAVs), which can generate the rotary flow rapid mixing in the reactor. The microloop reactor is composed of a stacked layered structure, which is prepared by a soft lithography method. The top layer (fluidic layer) has microchannels for supplying each reagent that is assembled with the bottom layer (control layer). The bottom layer has ultrathin polymer membrane, which can be an on-off valve to precisely control the nanoliter-scale volume of reagents in the reactor. To evaluate mixing performance, we use peroxidase reaction that produces fluorescent by-product (resorufin), thereby observing how fast they are mixed together. We quantify the uniformity of fluorescent intensity throughout the reaction loop, indicating that our proposed microloop reactor exhibits a homogeneous reaction. We envision the microreactor has potential to provide optimized microenvironments in which to perform dangerous chemistry, pharmaceuticals.
[References]
  1. deMello AJ, Nature, 442, 394, 2006
  2. Elvira KS, Solvas XCI, Wootton RC, deMello AJ, Nat. Chem., 5, 905, 2013
  3. Lee CC, Sui G, Elizarov A, Shu CJ, Shin YS, Dooley AN, et al., Science, 310, 1793, 2005
  4. Jang I, Song S, Lab Chip, 15, 3405, 2015
  5. Ko KY, Kim IH, Biotechnol. Bioprocess Eng., 21, 453, 2016
  6. Jeong HH, Issadore D, Lee D, Korean J. Chem. Eng., 33(6), 1757, 2016
  7. Singh R, Lee HJ, Singh AK, Kim DP, Korean J. Chem. Eng., 33(8), 2253, 2016
  8. Andarwa S, Tabrizi HB, Korean J. Chem. Eng., 34(5), 1319, 2017
  9. Zhong JJ, Korean J. Chem. Eng., 27(4), 1035, 2010
  10. Jin SH, Jung JH, Jeong SG, Kim J, Park TJ, Lee CS, Front. Chem. Sci. Eng., 12, 239, 2017
  11. Kockmann N, Gottsponer M, Zimmermann B, Roberge DM, Chemistry-a European J., 14, 7470, 2008
  12. Rahimi M, Valeh-e-Sheyda P, Rashidi H, Korean J. Chem. Eng., 34(11), 3017, 2017
  13. Sim JH, Moon HJ, Roh YH, Jung HW, Bong KW, Korean J. Chem. Eng., 34(5), 1495, 2017
  14. Tran TH, Chang WJ, Kim YB, Koo YM, Kim EK, Yoon JY, Kim J, Biotechnol. Bioprocess Eng., 12, 470, 2007
  15. Whitesides GM, Nature, 442, 368, 2006
  16. Kang LF, Chung BG, Langer R, Khademhosseini A, Drug Discov. Today, 13, 1, 2008
  17. You SG, Bai SJ, Biotechnol. Bioprocess Eng., 22, 474, 2017
  18. Liau A, Karnik R, Majumdar A, Cate JHD, Anal. Chem., 77, 7618, 2005
  19. Grigsby CL, Ho YP, Lin C, Engbersen JFJ, Leong KW, Scientific Reports, 3, 3155, 2013
  20. Lee CY, Chang CL, Wang YN, Fu LM, Int. J. Mol. Sci., 12(5), 3263, 2011
  21. Zhang ZY, Zhao P, Xiao GZ, Lin M, Cao XD, Biomicrofluidics, 2, 014101, 2018
  22. Kang KK, Lee CS, ACS Central Sci., 4, 434, 2018
  23. Hansen CL, Sommer MOA, Quake SR, Proceedings of the National Academy of Sciences of the United States of America, 101, 14431 (2004).
  24. Ridgeway WK, Seitaridou E, Phillips R, Williamson R, Nucleic Acids Res., 37, 142, 2009
  25. Kim S, Streets AM, Lin RR, Quake SR, Weiss S, Majumdar DS, Nature Methods, 8, 242, 2011
  26. Jin SH, Lee SS, Lee B, Jeong SG, Peter M, Lee CS, Anal. Chem., 89, 9722, 2017
  27. Jin SH, Jang SC, Lee B, Jeong HH, Jeong SG, Lee SS, Kim KP, Lee CS, Lab Chip, 16, 1358, 2016
  28. Jeong HH, Lee B, Jin SH, Jeong SG, Lee CS, Lab Chip, 16, 1698, 2016
  29. Jeong HH, Jin SH, Lee BJ, Kim T, Lee CS, Lab Chip, 15, 889, 2015
  30. Su M, Korean J. Chem. Eng., 34(2), 484, 2017
  31. Jung S, Yi H, Korean J. Chem. Eng., 32(9), 1713, 2015
  32. Jung S, Tang Y, Shim G, Lee CS, Choi CH, Yi H, Biochem. Eng. J., 135, 123, 2018
  33. Kim J, Jin SH, Kang KK, Chung YM, Lee CS, Chem. Eng. Sci., 175, 168, 2018
  34. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR, Science, 288(5463), 113, 2000
  35. Hong JW, Studer V, Hang G, Anderson WF, Quake SR, Nature Biotechnol., 22, 435, 2004
  36. Zhou MJ, Diwu ZJ, PanchukVoloshina N, Haugland RP, Anal. Biochem., 253, 162, 1997
  37. Razzaghi M, Karimi A, Aghdasinia H, Joghataei MT, Korean J. Chem. Eng., 34(11), 2870, 2017
  38. Miwa S, Treumann A, Bell A, Vistoli G, Nelson G, Hay S, von Zglinicki T, Free Radical Biology Medicine, 90, 173, 2016
  39. Zhao BZ, Summers FA, Mason RP, Free Radical Biol. Med., 53, 1080, 2012
  40. Jo Y, Kim K, Choi J, Biotechnol. Bioprocess Eng., 21, 191, 2016
  41. Shen YG, Song ZY, Yan YM, Song YX, Pan XX, Wang Q, Micromachines, 8, 172, 2017
  42. Nguyen NT, Hejazian M, Ooi CH, Kashaninejad N, Micromachines, 8, 186, 2017
  43. Ieong KIA, Yang CP, Wong CT, Shui AC, Wu TTY, Chen TH, Lam RHW, Micromachines, 8, 167, 2017
  44. Kang KK, Rhee HK, Microporous Mesoporous Mater., 257, 202, 2018
  45. Elvira KS, Solvas XCI, Wootton RC, Nat. Chem., 5, 905, 2013
  46. Einstein A, Investigations on the theory of the Brownian movement, Dover Publications, New York (1956).
  47. Fu B, Curry FR, Adamson RH, Weinbaum S, Ann. Biomed. Eng., 25, 375, 1997
  48. Antunes F, Brito PM, Redox Biol., 13, 1, 2017