Issue
Korean Journal of Chemical Engineering,
Vol.35, No.9, 1911-1918, 2018
Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles
Fundamental studies on the removal of metal impurities are essential for the production of nanosilica by combustion. This study reports the leaching characteristics, leaching kinetics and occurrence form of the metal impurities present in rice husk based on acid pretreatment. Acid pretreatment removes most of the metal impurities present in rice husk. In particular, 98wt% removal of potassium can be reached. The acid concentration, leaching time and reagent type have significant effects on the leaching of metal impurities, and optimal conditions exist for the acid pretreatment process. Furthermore, the leaching of metal impurities occurs through two stages, and parts of the metal impurities exist in organic-bound form, which can be leached through ion exchange. The results show that the pseudosecond- order model is suitable for describing the leaching kinetics of the metal impurities present in rice husk, and empirical formulas for predicting the metal contents leached from rice husk during acid pretreatment at ambient temperature are also obtained. Additionally, the different occurrence form and quantities of metal impurities in rice husk lead to different leaching effects, which strongly influences the chemical properties and quality of the obtained silica particles.
[References]
  1. Fu P, Hu S, Xiang J, Yi WM, Bai XY, Sun LS, Su S, Bioresour. Technol., 114, 691, 2012
  2. Awizar DA, Othman NK, Jalar A, Daud AR, Rahman IA, Al-Hardan NH, Int. J. Electrochem. Sc., 8, 1759, 2013
  3. Thomas BS, Renew. Sust. Energ. Rev., 82, 3913, 2018
  4. Zhou Y, Tian ZY, Fan RJ, Zhao SR, Zhou R, Guo HJ, Wang ZX, Powder Technol., 284, 365, 2015
  5. Fan Y, Yang R, Lei Z, Liu N, Lv J, Zhai S, Zhai B, Wang L, Korean J. Chem. Eng., 33(4), 1416, 2016
  6. Artkla S, Korean J. Chem. Eng., 29(5), 555, 2012
  7. Sarangi M, Nayak P, Tiwari TN, Compos. Part B-Eng., 42, 1994, 2011
  8. Huang S, Jing S, Wang JF, Wang ZW, Jin Y, Powder Technol., 117(3), 232, 2001
  9. Krishnarao RV, Subrahmanyam J, Kumar TJ, J. Eur. Ceram. Soc., 1, 99, 2001
  10. Zevenhoven M, Yrjas P, Skrifvars BJ, Hupa M, Energy Fuels, 26(10), 6366, 2012
  11. Nowakowski DJ, Jones JM, Brydson RMD, Ross AB, Fuel, 86(15), 2389, 2007
  12. Liu XL, Bi XTT, Fuel Process. Technol., 92(7), 1273, 2011
  13. Yu CW, Zheng Y, Cheng YS, Jenkins BM, Zhang RH, VanderGheynst JS, Bioresour. Technol., 101(12), 4331, 2010
  14. Liu H, Li M, Cao X, Sun R, Energy Technol., 1, 70, 2013
  15. Al-Zuhair S, Abualreesh M, Ahmed K, Razak AA, Energy Technol., 3, 121, 2015
  16. Salas A, Delvasto S, de Gutierrez RM, Lange D, Cement Concrete Res., 9, 773, 2009
  17. Alyosef HA, Eilert A, Welscher J, Ibrahim SS, Denecke R, Paticul. Sci. Technol., 5, 524, 2013
  18. Chandrasekhar S, Pramada PN, Majeed J, J. Mater. Sci., 41(23), 7926, 2006
  19. Ho YS, Harouna-Oumarou HA, Fauduet H, Porte C, Sep. Purif. Technol., 45(3), 169, 2005
  20. Ho YS, Water Res., 40, 119, 2006
  21. Oudenhoven SRG, Westerhof RJM, Aldenkamp N, Brilman DWF, Kersten SRA, J. Anal. Appl. Pyrolysis, 103, 112, 2013
  22. Wu HW, Yip K, Kong ZY, Li CZ, Liu DW, Yu Y, Gao XP, Ind. Eng. Chem. Res., 50(21), 12143, 2011
  23. Liaw SB, Wu HW, Ind. Eng. Chem. Res., 52(11), 4280, 2013
  24. Chen P, Gu W, Fang W, Ji X, Bie R, Environ. Prog. Sustain., 36, 830, 2017
  25. Deng L, Zhang T, Che DF, Fuel Process. Technol., 106, 712, 2013
  26. Scott DS, Paterson L, Piskorz J, Radlein D, J. Anal. Appl. Pyrolysis, 57, 169, 2001
  27. Umeda J, Kondoh K, Ind. Crop. Prod., 32, 539, 2010
  28. Yu C, Thy P, Wang L, Anderson SN, VanderGheynst JS, Upadhyaya SK, Jenkins BM, Fuel Process. Technol., 128, 43, 2014
  29. Mourant D, Wang ZH, He M, Wang XS, Garcia-Perez M, Ling KC, Li CZ, Fuel, 90(9), 2915, 2011
  30. Gu S, Zhou J, Luo Z, Wang Q, Ni M, Ind. Crop. Prod., 50, 540, 2013
  31. Umeda J, Kondoh K, J. Mater. Sci., 43(22), 7084, 2008
  32. Vassilev SV, Vassileva CG, Baxter D, Fuel, 129, 292, 2014
  33. Kong ZY, Liaw SB, Gao XP, Yu Y, Wu HW, Fuel, 128, 433, 2014
  34. Lv DZ, Xu MH, Liu XW, Zhan ZH, Li ZY, Yao H, Fuel Process. Technol., 91(8), 903, 2010
  35. Zhang SP, Dong Q, Zhang L, Xiong YQ, Bioresour. Technol., 199, 352, 2016
  36. Vassilev SV, Baxter D, Vassileva CG, Fuel, 117, 152, 2014
  37. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Fuel, 89(5), 913, 2010
  38. He Z, Mao J, Honeycutt CW, Ohno T, Hunt JF, Cade-Menun BJ, Biol. Fert. Soils, 45, 609, 2009