Issue
Korean Journal of Chemical Engineering,
Vol.35, No.9, 1878-1888, 2018
Analysis of molar flux and current density in the electrodialytic separation of sulfuric acid from spent liquor using an anion exchange membrane
Separation of sulfuric acid from a dilute solution involved a plate and frame type electrodialysis unit using a commercial anion exchange membrane. Experiments were conducted in batch with catholyte concentrations ranging from 1 to 5 wt%. Effect of applied current density, initial catholyte concentration and initial concentration difference of catholyte and anolyte on the molar flux was studied extensively. The maximum molar flux was estimated to be 10.52 X 10-8 mol cm-2s-1 at 4.45 wt% catholyte concentration and applied current density of 30 mA cm-2. Current efficiencies were observed to be 75 to 85% at lower current density, which rose to more than 100% at 20 and 30mA cm-2, at equal initial concentration of catholyte and anolyte. Diffusive flux and flux due to membrane potential contributed very less compared to total flux in presence of applied electric current. An equation was developed to predict the practical molar fluxes, which fitted satisfactorily with minor standard deviation. Pristine and used membrane specimens were characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).
[References]
  1. Agrawal A, Sahu KK, J. Hazard. Mater., 171(1-3), 61, 2009
  2. Lopez-Delgado A, Alguacil FJ, Lopez FA, Hydrometallurgy, 45, 97, 1997
  3. Ozdemir T, Oztin C, Kincal NS, Chem. Eng. Commun., 193(5), 548, 2006
  4. Kerney U, Resour. Conserv. Recycl., 10, 145, 1994
  5. Nenov V, Dimitrova N, Dobrevsky I, Hydrometallurgy, 44, 43, 1997
  6. Hudson RM, ASM Handbook, 3, 67, 1994
  7. Kesieme UK, Aral H, Duke M, Milne N, Cheng CG, Hydrometallurgy, 138, 14, 2013
  8. Nath K, Membrane separation processes, PHI, New Delhi, 233 (2017).
  9. Rodrigues MAS, Bernardes AM, Ferreira JZ, 184 Thorn Hill Road, Warrendale, PA 15086-7528, USA:659-672 (1999).
  10. Cifuentes L, Crisostomo G, Ibanez JP, Casas JM, Alvarez F, Cifuentes G, J. Membr. Sci., 207(1), 1, 2002
  11. Wisniewski J, Wisniewska G, Winnicki T, Desalination, 169(1), 11, 2004
  12. Marti-Calatayud MC, Buzzi DC, Garcia-Gabaldon M, Ortega E, Bernardes AM, Tenorio JAS, Perez-Herranz V, Desalination, 343, 120, 2014
  13. Marti-Calatayud MC, Garcia-Gabaldon M, Perez-Herranz V, J. Membr. Sci., 443, 181, 2013
  14. Buzzi DC, Viegas LS, Rodrigues MAS, Bernardes AM, Tenorio JAS, Miner. Eng., 40, 82, 2013
  15. Jaroszek H, Mikołajczak W, Nowak M, Pisarska B, Desalination Water Treatment, 64, 223, 2017
  16. Pourcelly G, Tugas I, Gavach C, J. Membr. Sci., 97, 99, 1994
  17. Cherif AT, Gavach C, Cohen T, Dagard P, Albert L, Hydrometallurgy, 21, 191, 1988
  18. Urano K, Ase T, Naito Y, Desalination, 51, 213, 1984
  19. Cherif AT, Gavach C, J. Electroanal. Chem., 265, 143, 1989
  20. Koter S, Kultys M, J. Membr. Sci., 318(1-2), 467, 2008
  21. Lorrain Y, Pourcelly G, Gavach C, J. Membr. Sci., 110(2), 181, 1996
  22. Lorrain Y, Pourcelly G, Gavach C, Desalination, 109(3), 231, 1997
  23. Lewis DJ, Tye FL, J. Appl. Chem., 9, 279, 1959
  24. Verbrugge MW, Hill RF, J. Electrochem. Soc., 137(4), 1131, 1199
  25. Audinosa R, Nassr-allah A, Alvarezb JR, Andresb JL, Alvarezb R, J. Membr. Sci., 76, 147, 1993
  26. Luo GS, Pan S, Liu JG, Desalination, 150(3), 227, 2002
  27. Kanavova N, Machuca L, Periodica Polytechnica, Chem. Eng., 58(2), 25 (2014).
  28. Akgemci EG, Ersoz M, Atalay T, J. Sep. Sci. Technol., 39(1), 165, 2004
  29. Nasef MM, Saidi H, J. Membr. Sci., 216(1-2), 27, 2003
  30. Bartholin M, Makromol. Chem., 182, 2075, 1981