Issue
Korean Journal of Chemical Engineering,
Vol.35, No.9, 1854-1859, 2018
Improved reutilization of industrial crude lysine to 1,5-diaminopentane by enzymatic decarboxylation using various detergents and organic solvents
World-wide production of L-lysine has rapidly increased in recent years. In the industrial scale production, it is cost effective to minimize waste as many waste materials are generated during downstream processing. Therefore, the conversion of crude lysine to a more valuable product reduces waste emission. In this study, 1,5-diaminopentane (DAP, trivial name: cadaverine) was produced by L-lysine decarboxylation using Hafnia alvei. The conditions of enzymatic reaction were determined. In particular, the addition of specific detergent (Brij 56) was significantly affected in the bioconversion system. Addition of hydrophobic organic solvent improved the mixing of the reactants. Finally, an industrial crude form of lysine served as a substrate. The DAP conversion by analytical, feed and industrial crude Llysine was 93.9%, 90.3%, and 63.8%, respectively.
[References]
  1. Kelle R, Hermann T, Bathe B, L-lysine production, Handbook of Corynebacterium glutamicum, CRC Press, Florida (2005).
  2. Evans J, Commercial amino acids, BCC Research: Market Research Reports, BIO007L (2017). http://www.bccresearch.com.
  3. Elder M, World markets for fermentation ingredients, BCC Research: Market Research Reports, FOD020E (2018). http://www.bccresearch.com.
  4. Eggeling L, Bott M, Appl. Microbiol. Biotechnol., 99(8), 3387, 2015
  5. Wittmann C, Becker J, Microbiol. Monogr., 5, 39, 2007
  6. Uffmann KE, Binder M, US Patent, 6,340,486 (2002).
  7. Adkins J, Jordan J, Nielsen DR, Biotechnol. Bioeng., 110, 1726, 2015
  8. Jeong S, Yeon YJ, Choi EG, Byun S, Cho DH, Kim IK, Kim YH, Korean J. Chem. Eng., 33(5), 1530, 2016
  9. Chae CG, Kim YJ, Lee SJ, Oh YH, Yang JE, Joo JC, Kang KH, Jang YA, Lee H, Park AR, Song BK, Lee SY, Park SJ, Biotechnol. Bioprocess Eng., 21, 169, 2016
  10. Li N, Chou H, Yu L, Xu Y, Biotechnol. Bioprocess Eng., 19, 965, 2014
  11. Wang C, Zhang K, Zhongjun C, Cai H, Honggui W, Biotechnol. Bioprocess Eng., 20, 439, 2015
  12. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A, Appl. Microbiol. Biotechnol., 82(1), 115, 2009
  13. Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz Q, Eur. J. Soil Biol., 45, 12, 2009
  14. Kim JH, Seo HM, Sathiyanarayanan G, Bhatia SK, Song HS, Kim J, Jeon JM, Yoon JJ, Kim YG, Park K, Yang YH, J. Ind. Eng. Chem., 46, 44, 2017
  15. Takatsuka Y, Yamaguchi Y, Ono M, Kamio Y, J. Bacteriol., 182, 6732, 2000
  16. Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, et al., Embo J., 30, 931, 2011
  17. Abercrombie M, In Vitro, 6, 128, 1970
  18. Han K, Levenspiel O, Biotechnol. Bioeng., 32, 430, 1987
  19. Velioglu Z, Urek RO, Biotechnol. Bioprocess Eng., 21, 430, 2017
  20. Manaargadoo-Catin M, Ali-Cherif A, Pougnas JL, Perrin C, Adv. Colloid Interface Sci., 228, 1, 2016
  21. Hait SK, Moulik SP, J. Surfactants Deterg., 4, 303, 2001
  22. Linke D, Methods Enzymol., 463, 603, 2009
  23. Luche S, Santoni V, Rabilloud T, Proteomics, 3, 249, 2003
  24. Kim SB, Yoo HY, Kim JS, Kim SW, Process Biochem., 49(12), 2203, 2014
  25. Laane C, Boeren S, Vos K, Veeger C, Biotechnol. Bioeng., 30, 81, 1987
  26. Gu JL, Tong HF, Sun LY, Biotechnol. Bioprocess Eng., 22, 76, 2017
  27. Hermann T, J. Biotechnol., 104, 155, 2003
  28. Nguyen AT, Kim WS, Korean J. Chem. Eng., 34(7), 2002, 2017