Issue
Korean Journal of Chemical Engineering,
Vol.35, No.9, 1800-1806, 2018
Mass transfer enhancement factor for chemical absorption of carbon dioxide into sodium metaborate solution
Hydrogen is getting increasing attention as a medium for energy storage, and sodium borohydride is accepted as a suitable carrier for hydrogen. The main product of the process by means of which hydrogen is produced from sodium borohydride is sodium metaborate. Our aim was to find an alternative use for sodium metaborate and specifically investigating the feasibility to use it for carbon dioxide capture from flue gases. The products of this chemical absorption are sodium carbonate, sodium bicarbonate and boric acid, all of which are industrially important chemicals. A bubble column was used in the experiments. Oxygen desorption technique was employed to determine the liquid side physical mass transfer coefficient. Chemical mass transfer coefficient was determined by absorption of carbon dioxide from its mixture with nitrogen into sodium metaborate solution. Enhancement factor was then calculated and a correlation was developed for it.
[References]
  1. Versteeg GF, Van Dijck LAJ, Van Swaaij WPM, Chem. Eng. Commun., 144, 113, 1996
  2. Kumar PS, Hogendoorn JA, Versteeg GF, Feron PHM, AIChE J., 49(1), 203, 2003
  3. Dugas R, Rochelle G, Energy Procedia, 1, 1163, 2009
  4. Edali M, Aboudheir A, Idem R, Int. J. Greenhouse Gas Control, 3, 550, 2009
  5. Hamborg ES, D. Thesis, University of Groningen, Enschede (2011).
  6. Meldon JH, Morales-Cabrera MA, Chem. Eng. J., 171(3), 753, 2011
  7. Kohl AL, Nielsen R, Gas Purification, 5th Ed., Gulf Publishing Co., Houston (1997).
  8. Aronu UE, Svendsen HF, Hoff KA. Juliussen O, Energy Procedia, 1, 1051, 2009
  9. Aronu UE, Svendsen HF, Hoff KA, Int. J. Greenhouse Gas Control, 4, 771, 2010
  10. Goff GS, Rochelle GT, Ind. Eng. Chem. Res., 43(20), 6400, 2004
  11. Portugal AF, Derks PWJ, Versteeg GE, Magalhaes FD, Mendes A, Chem. Eng. Sci., 62(23), 6534, 2007
  12. Blauwhoff PMM, Versteeg GF, Van Swaaij WPM, Chem. Eng. Sci., 38, 1411, 1983
  13. Yeh JT, Resnik KP, Rygle K, Pennline HW, Fuel Process. Technol., 86(14-15), 1533, 2005
  14. Derks PWJ, Versteeg GF, Energy Procedia, 1, 1139, 2009
  15. Telikapelli V, Kozak F, Leandri JF, Sherrick B, Black J, Muraskin D, Cage M, Hammond M, Spitznogle G, Presented at Greenhouse Gas Technology 10 (GHGT10), Amsterdam (2010).
  16. Darde V, Van Well WJM, Fosboel PL, Stenby EH, Thomsen K, Int. J. Greenhouse Gas Control, 5, 1149, 2011
  17. Liu J, Wang S, Qi G, Zhao B, Chen C, Energy Procedia, 4, 525, 2011
  18. Uysal D, Dogan OM, Uysal BZ, Int. J. Chem. Kinet., 49, 377, 2017
  19. Ityokumbul MT, Kosaric N, Bulani W, Chem. Eng. J., 53, 167, 1994
  20. Haut B, Halloin V, Cartage T, Cockx A, Chem. Eng. Sci., 59(22-23), 5687, 2004
  21. Kantarci N, Borak F, Ulgen KO, Process Biochem, 40, 2263, 2005
  22. Jakobsen HA, Bourg I, Hjarbo KW, Svendsen HF, Parallel Computational Fluid Dynamics - Trends and Applications, Elsevier, New York (2001).
  23. Dhaouadi H, Poncin S, Hornut JM, Midoux N, Chem. Eng. Process., 47(4), 548, 2008
  24. Alvarez E, Gomez-Diaz D, Navaza JM, Sanjurjo B, Chem. Eng. J., 137(2), 251, 2008
  25. Harriot P, Chemical Reactor Design, Marcel Dekker, New York (2002).
  26. Degaleesan S, Dudukovic M, Pan Y, AIChE J., 47(9), 1913, 2001
  27. Hyndman CL, Larachi F, Guy C, Chem. Eng. Sci., 52(1), 63, 1997
  28. Bach HF, Pilhofer T, Ger. Chem. Eng., 1, 270, 1978
  29. Oels U, Lucke J, Buchholz R, Schugerl K, Ger. Chem. Eng., 1, 115, 1978
  30. Krishna R, Wilkinson PM, Van Dierendonck LL, Chem. Eng. Sci., 46, 2491, 1991
  31. Yamashita F, Inoue H, J. Chem. Eng. Jpn., 8, 444, 1975
  32. Adams RM, Boron RM, Metallo-boron Compounds and Boranes, Wiley, USA (1964).
  33. Edwards JO, Morrison GC, Ross VH, Schultz JW, J. Am. Ceram. Soc., 77, 266, 1955
  34. Deckwer WD, Louisi Y, Zaidi A, Ralek M, Ind. Eng. Chem. Process Des. Dev., 16, 699, 1980
  35. Perry RH, Green DW, Perry’s Chemical Engineers’ Handbook, 8th Ed., McGraw Hill, New York (2008).
  36. Cents AHG, de Bruijn FT, Brilman DWF, Versteeg GF, Chem. Eng. Sci., 60(21), 5809, 2005
  37. Chen PC, Shi W, Du R, Chen VE, Ind. Eng. Chem. Res., 47(16), 6336, 2008
  38. Fan LS, Gas-Liquid-Solid Fluidization Engineering, Butterworths, New York (1989).
  39. Shah YT, Kelkar BG, Godbole SP, Deckwer WD, AIChE J., 28, 353, 1982
  40. Joshi JB, Sharma MM, Trans. Inst. Chem. Eng., 57, 244, 1979
  41. Kawase Y, Moo-Young M, Chem. Eng. Res. Des., 65, 121, 1987
  42. Luo X, Lee DJ, Lau R, Yang G, Fan LS, Chem. Eng. Process., 45, 665, 1999
  43. Zehner P, Kraume M, Wiley VCH Verlag GmbH &Co. KGaA, Weinheim (2000).
  44. Sada E, Kumazawa H, Lee C, Fujiwara N, Ind. Chem. Eng. Process Des. Dev., 24, 255, 1985
  45. Weisenberger S, Schumpe A, AIChE J., 42(1), 298, 1996
  46. Danckwerts PV, Gas-liquid Reactions, McGraw-Hill, New York (1970).
  47. Higbie R, Trans. Am. Ins. Chem. Eng., 31, 365, 1935
  48. Zhou YQ, Fang CH, Fang Y, Zhu FY, Chin. J. Chem. Eng., 21(9), 1048, 2013
  49. Speight JG, Lange’s Handbook of Chemistry, 16th Ed., McGraw-Hill, New York (2005).
  50. Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill, New York (2004).
  51. Versteeg GF, Van Swaaij WPM, J. Chem. Eng. Data, 33, 29, 1988
  52. Cloutier CR, Alfantazi A, Gyenge E, Adv. Mater. Res., 15-17, 267, 2007
  53. Hermann C, Schumpe A, AIChE J., 42, 298, 1996
  54. Schumpe A, Deckwer WD, Biotechnol. Bioeng., 21, 1075, 1979
  55. Licht SE, Weiland RH, Presented at the Spring National Meeting, American Institute of Chemical Engineers, Paper no.57f, Houston, Texas (1989).
  56. Dang HY, Rochelle GT, Sep. Sci. Technol., 38(2), 337, 2003
  57. Astarita G, Mass Transfer with Chemical Reactions, Elsevier, Amsterdam (1967).
  58. Putta KR, Tobiesen FA, Svendsen HF, Knuutila HK, Appl. Energy, 206, 765, 2017
  59. Krauss M, Rzehak R, Chem. Eng. Sci., 166, 193, 2017